Question #282730

8. If the real normalized functions f(x) and g(x) are not orthogonal, show that their sum f(x) +g(x) and their difference f(x)−g(x) are orthogonal.


1
Expert's answer
2021-12-27T13:03:16-0500

Inner product for real functions: f,g=f(x)g(x)dx\langle f,g\rangle = \int\limits_{-\infty}^{\infty }f(x)g(x)dx .


If f(x)f(x) and g(x)g(x) are normalized, then f,f=f(x)2dx=1\langle f,f\rangle = \int\limits_{-\infty}^{\infty }f(x)^2dx=1 and g,g=g(x)2dx=1\langle g,g\rangle = \int\limits_{-\infty}^{\infty }g(x)^2dx=1 .


We need to prove, that f+g,fg=0\langle f+g, f-g\rangle =0 .


f+g,fg=(f(x)+g(x))(f(x)g(x))dx=(f(x)2g(x)2)dx=f(x)2dxg(x)2dx=11=0.\langle f+g,f-g\rangle = \int\limits_{-\infty}^{\infty }\big(f(x)+g(x)\big)\cdot \big( f(x)-g(x)\big)dx= \int\limits_{-\infty}^{\infty }\big(f(x)^2-g(x)^2\big)dx= \int\limits_{-\infty}^{\infty }f(x)^2dx-\int\limits_{-\infty}^{\infty }g(x)^2dx=1-1=0.


So, f(x)+g(x)f(x)+g(x) and f(x)g(x)f(x)-g(x) are orthogonal


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS