Inner product for real functions: ⟨f,g⟩=−∞∫∞f(x)g(x)dx .
If f(x) and g(x) are normalized, then ⟨f,f⟩=−∞∫∞f(x)2dx=1 and ⟨g,g⟩=−∞∫∞g(x)2dx=1 .
We need to prove, that ⟨f+g,f−g⟩=0 .
⟨f+g,f−g⟩=−∞∫∞(f(x)+g(x))⋅(f(x)−g(x))dx=−∞∫∞(f(x)2−g(x)2)dx=−∞∫∞f(x)2dx−−∞∫∞g(x)2dx=1−1=0.
So, f(x)+g(x) and f(x)−g(x) are orthogonal
Comments