Find the Wronskian of the following functions and determine whether it is linearly dependent or linearly independent on (-∞,∞).
{x2, x+1, x-3} ans, W=8, linearly independent
{3e2x, e2x} ans, W=0, linearly dependent
{x2, x3, x4} ans, W=2x^6, linearly independent
1.
"W(x^2,~x+1,~x-3)=det \\begin{pmatrix}\n x^2 & x+1 & x-3\\\\\n 2x & 1&1\\\\\n2&0&0\n\\end{pmatrix}=2\\cdot(x+1-(x-3))=2\\cdot4=8\\not =0," linearly independent.
2.
"W(3e^{2x},~e^{2x})=det \\begin{pmatrix}\n 3e^{2x} & e^{2x} \\\\\n 6e^{2x}& 2e^{2x}\n\\end{pmatrix}=6e^{4x}- 6e^{4x}=0," linearly dependent.
3.
"W(x^2,~x^3,~x^4)=det \\begin{pmatrix}\n x^2& x^3&x^4\\\\\n 2x& 3x^2&4x^3\\\\\n2&6x&12x^2\n\\end{pmatrix}=x^2(36x^4-24x^4)-x^3(24x^3-8x^3)+x^4(12x^2-6x^2)=12x^6-16x^6+6x^6=2x^6\\not=0," linearly independent.
Comments
Leave a comment