1.
W(x2, x+1, x−3)=det⎝⎛x22x2x+110x−310⎠⎞=2⋅(x+1−(x−3))=2⋅4=8=0, linearly independent.
2.
W(3e2x, e2x)=det(3e2x6e2xe2x2e2x)=6e4x−6e4x=0, linearly dependent.
3.
W(x2, x3, x4)=det⎝⎛x22x2x33x26xx44x312x2⎠⎞=x2(36x4−24x4)−x3(24x3−8x3)+x4(12x2−6x2)=12x6−16x6+6x6=2x6=0, linearly independent.
Comments