1.
W ( x 2 , x + 1 , x − 3 ) = d e t ( x 2 x + 1 x − 3 2 x 1 1 2 0 0 ) = 2 ⋅ ( x + 1 − ( x − 3 ) ) = 2 ⋅ 4 = 8 ≠ 0 , W(x^2,~x+1,~x-3)=det \begin{pmatrix}
x^2 & x+1 & x-3\\
2x & 1&1\\
2&0&0
\end{pmatrix}=2\cdot(x+1-(x-3))=2\cdot4=8\not =0, W ( x 2 , x + 1 , x − 3 ) = d e t ⎝ ⎛ x 2 2 x 2 x + 1 1 0 x − 3 1 0 ⎠ ⎞ = 2 ⋅ ( x + 1 − ( x − 3 )) = 2 ⋅ 4 = 8 = 0 , linearly independent.
2.
W ( 3 e 2 x , e 2 x ) = d e t ( 3 e 2 x e 2 x 6 e 2 x 2 e 2 x ) = 6 e 4 x − 6 e 4 x = 0 , W(3e^{2x},~e^{2x})=det \begin{pmatrix}
3e^{2x} & e^{2x} \\
6e^{2x}& 2e^{2x}
\end{pmatrix}=6e^{4x}- 6e^{4x}=0, W ( 3 e 2 x , e 2 x ) = d e t ( 3 e 2 x 6 e 2 x e 2 x 2 e 2 x ) = 6 e 4 x − 6 e 4 x = 0 , linearly dependent.
3.
W ( x 2 , x 3 , x 4 ) = d e t ( x 2 x 3 x 4 2 x 3 x 2 4 x 3 2 6 x 12 x 2 ) = x 2 ( 36 x 4 − 24 x 4 ) − x 3 ( 24 x 3 − 8 x 3 ) + x 4 ( 12 x 2 − 6 x 2 ) = 12 x 6 − 16 x 6 + 6 x 6 = 2 x 6 ≠ 0 , W(x^2,~x^3,~x^4)=det \begin{pmatrix}
x^2& x^3&x^4\\
2x& 3x^2&4x^3\\
2&6x&12x^2
\end{pmatrix}=x^2(36x^4-24x^4)-x^3(24x^3-8x^3)+x^4(12x^2-6x^2)=12x^6-16x^6+6x^6=2x^6\not=0, W ( x 2 , x 3 , x 4 ) = d e t ⎝ ⎛ x 2 2 x 2 x 3 3 x 2 6 x x 4 4 x 3 12 x 2 ⎠ ⎞ = x 2 ( 36 x 4 − 24 x 4 ) − x 3 ( 24 x 3 − 8 x 3 ) + x 4 ( 12 x 2 − 6 x 2 ) = 12 x 6 − 16 x 6 + 6 x 6 = 2 x 6 = 0 , linearly independent.
Comments