3. (i) In the presence of an external uniform magnetic field, the normal Zeeman effect is observed
and the original transition generates into three transitions of frequencies:
ν = ν0 −
eB
4πm
; ν = ν0; ν = ν0 +
eB
4πm
where m is the mass of the electron. Using a diagram, indicate what are allowed normal
Zeeman transitions between d(l = 2) state and p(l = 1) state. [6 marks]
(ii) Find the minimum magnetic field needed for the Zeeman effect to be observed in a
spectral line of 400 nm wavelength when a spectrometer whose resolution is 0.010 nm is
used.
the presence of an external uniform magnetic field, the normal Zeeman effect is observed
Photon energy "E=h\\upsilon"
In presence of magnetic field 3 spectrum line correspondingPhoton energy
We can written as
"E_1=E_0-\\mu_B B"
"E_2=E_0"
"E_3=E_0+\\mu_B B"
Now frequency
"\\upsilon_1=\\upsilon_0-\\frac{\\mu_B B}{h}"
"\\upsilon_2=\\upsilon_0"
"\\upsilon_2=\\upsilon_0+\\frac{\\mu_B B}{h}"
"\\frac{\\mu_B}{h}=\\frac{e}{4\\pi m}"
"\\upsilon_1=\\upsilon_0-\\frac{eB}{4\\pi m} (when \u2206m=-1)"
"\\upsilon_2=\\upsilon_0(when\u2206m=0)"
"\\upsilon_3=\\upsilon_0+\\frac{eB}{4\\pi m}(\u2206m=+1)"
We that
"\\nu=\\frac{c}{\\lambda}"
"\\nu=\\frac{3\\times10^8}{400\\times10^{-9}}=7.5\\times10^{-14}Hz"
"\\nu_1=\\frac{c}{\\lambda_1}"
"\\nu_1=\\frac{3\\times10^8}{400\\times10^{-9}+0.010\\times10^{-9}}"
"\\nu_1=\\frac{3\\times10^8}{400\\times10^{-9}}\\times\\frac{1}{1+\\frac{0.1}{400}}"
"\u2206\\nu=7.5\\times10^{14}(1-2.5\\times10^{-5})"
"\u2206\\nu=1.875\\times10^{10}Hz"
"B=\\frac{4\\pi m\u2206\\nu}{e}"
Comments
Leave a comment