The photoelectric equation is
h c λ = ϕ + E K \frac{hc}{λ} = ϕ+E_K λ h c = ϕ + E K
EK =Kinetic energy = 1 2 m v 2 =\frac{1}{2}mv^2 = 2 1 m v 2
h c λ = ϕ + 1 2 m v 2 \frac{hc}{λ} = ϕ+\frac{1}{2}mv^2 λ h c = ϕ + 2 1 m v 2
h=plank's constant
c=speed of light
λ=wavelength
ϕ=work function
m=mass of electron
v=velocity of electron
Given
h = 6.626 × 1 0 − 34 J s c = 3 × 1 0 8 m / s ϕ = 3.18 × 1 0 − 19 J v = 5.7 × 1 0 14 H z m = 9.10938 × 1 0 − 31 k g λ = c f r e q u e n c y = 3 × 1 0 8 5.7 × 1 0 14 = 5.26 × 1 0 − 7 m v = 2 m [ h c λ − ϕ ] = 2 9.10938 × 1 0 − 31 [ 6.626 × 1 0 − 34 × 3 × 1 0 8 5.26 × 1 0 − 7 − 3.18 × 1 0 − 19 ] = 2.1955 × 1 0 30 × ( 3.779 × 1 0 − 19 − 3.18 × 1 0 − 19 ) = 1.3151 × 1 0 11 = 3.626 × 1 0 5 m / s h=6.626 \times 10^{-34} \;Js \\
c= 3 \times 10^8 \;m/s \\
ϕ = 3.18 \times 10^{-19} \;J \\
v= 5.7 \times 10^{14} \;Hz \\
m= 9.10938 \times 10^{-31} \;kg \\
λ = \frac{c}{frequency} \\
= \frac{3 \times 10^8}{5.7 \times 10^{14}} = 5.26 \times 10^{-7} \;m \\
v = \sqrt{\frac{2}{m} [\frac{hc}{λ }-ϕ] } \\
= \sqrt{\frac{2}{9.10938 \times 10^{-31}} [\frac{6.626 \times 10^{-34} \times 3 \times 10^8}{5.26 \times 10^{-7} }-3.18 \times 10^{-19}] } \\
= \sqrt{2.1955 \times 10^{30} \times (3.779 \times 10^{-19} -3.18 \times 10^{-19} ) } \\
= \sqrt{1.3151 \times 10^{11}} \\
= 3.626 \times 10^5\; m/s h = 6.626 × 1 0 − 34 J s c = 3 × 1 0 8 m / s ϕ = 3.18 × 1 0 − 19 J v = 5.7 × 1 0 14 Hz m = 9.10938 × 1 0 − 31 k g λ = f re q u e n cy c = 5.7 × 1 0 14 3 × 1 0 8 = 5.26 × 1 0 − 7 m v = m 2 [ λ h c − ϕ ] = 9.10938 × 1 0 − 31 2 [ 5.26 × 1 0 − 7 6.626 × 1 0 − 34 × 3 × 1 0 8 − 3.18 × 1 0 − 19 ] = 2.1955 × 1 0 30 × ( 3.779 × 1 0 − 19 − 3.18 × 1 0 − 19 ) = 1.3151 × 1 0 11 = 3.626 × 1 0 5 m / s
Answer: 3.626 × 1 0 5 m / s 3.626 \times 10^5 \; m/s 3.626 × 1 0 5 m / s
Comments