Calculate the velocity of an electron emitted by radiation of frequency 5.7 x 10^14Hz from a surface with a work function of 3.18 x 10^-19J
The photoelectric equation is
"\\frac{hc}{\u03bb} = \u03d5+E_K"
EK=Kinetic energy "=\\frac{1}{2}mv^2"
"\\frac{hc}{\u03bb} = \u03d5+\\frac{1}{2}mv^2"
h=plank's constant
c=speed of light
λ=wavelength
ϕ=work function
m=mass of electron
v=velocity of electron
Given
"h=6.626 \\times 10^{-34} \\;Js \\\\\n\nc= 3 \\times 10^8 \\;m\/s \\\\\n\n\u03d5 = 3.18 \\times 10^{-19} \\;J \\\\\n\nv= 5.7 \\times 10^{14} \\;Hz \\\\\n\nm= 9.10938 \\times 10^{-31} \\;kg \\\\\n\n\u03bb = \\frac{c}{frequency} \\\\\n\n= \\frac{3 \\times 10^8}{5.7 \\times 10^{14}} = 5.26 \\times 10^{-7} \\;m \\\\\n\nv = \\sqrt{\\frac{2}{m} [\\frac{hc}{\u03bb }-\u03d5] } \\\\\n\n= \\sqrt{\\frac{2}{9.10938 \\times 10^{-31}} [\\frac{6.626 \\times 10^{-34} \\times 3 \\times 10^8}{5.26 \\times 10^{-7} }-3.18 \\times 10^{-19}] } \\\\\n\n= \\sqrt{2.1955 \\times 10^{30} \\times (3.779 \\times 10^{-19} -3.18 \\times 10^{-19} ) } \\\\\n\n= \\sqrt{1.3151 \\times 10^{11}} \\\\\n\n= 3.626 \\times 10^5\\; m\/s"
Answer: "3.626 \\times 10^5 \\; m\/s"
Comments
Leave a comment