Question #194602
The sun has a radiated power of 3.9 · 1026 W, a surface temperature of 5800 K and a radius of 6.96 · 108 m. Examine whether the sun radiates like a black body?
1
Expert's answer
2021-05-17T16:24:57-0400

Radiation energy Q emitted by an object in time t, object has surface area A, emissivity e and kelvin temperature T is:

Q=eσT4Atσ=5.87×108  J/(s×m2×T4)Q=3.9×1026  Wr=6.96×108  mT=5800=5.8×103  Kt=1  sQ=e \sigma T^4At \\ \sigma = 5.87 \times 10^{-8} \;J/(s \times m^2 \times T^4) \\ Q = 3.9 \times 10^{26} \;W \\ r = 6.96 \times 10^8 \;m \\ T = 5800 =5.8 \times 10^3\;K \\ t = 1 \;s

The sun is an spherical shape object. The surface area of the sun is

A=4πr2=4π(6.96×108)2=6.087×1018  m2e=QσT4At=3.9×10265.87×108×(5.8×103)4×6.087×1018×1=3.9×10264.04×1026=0.9651A = 4 \pi r^2 \\ = 4 \pi (6.96 \times 10^8)^2 \\ = 6.087 \times 10^{18} \;m^2 \\ e = \frac{Q}{\sigma T^4At} \\ = \frac{3.9 \times 10^{26}}{5.87 \times 10^{-8} \times (5.8 \times 10^3)^4 \times 6.087 \times 10^{18} \times 1} \\ = \frac{3.9 \times 10^{26}}{4.04 \times 10^{26}} \\ = 0.965 ≈ 1

e = 1 for black body

So, the sun radiates like a black body.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS