Question #180249

One example of a nuclear fission reaction involving slowly moving neutrons is


1/0n + 235/92 U ---> 236/92 U* ---> 95/42 Mo + 139/57 La + (2) 1/0n


What is the total kinetic energy (in eV) of the products of the reaction? The relevant masses are:

235/92 U = 235.043 924 u; 95/42 Mo - 94.9058 u; 139/59 La = 138.9061 u, and 1/0n = 1.0087u


1
Expert's answer
2021-04-13T07:01:09-0400

To be given in question

Urenium mass =235.043uu

Molebidnum mass =94.9058uu

Neutron mass =1.0087uu

Lanthanum mass =13 8.9061 uu


To be asked in question

Kinetic energy in eV(election volt) =?

23592U +1n \longrightarrow 236U*\longrightarrow 9542 Mo+13957La+2(1n)

M1=M(235U)+M1nM_{1}=M({235_{U}})+M_{{1}_{n}}

M2=M235U+M139La+2M1nM_{2}=M_{{235}_{U}}+M_{{139}_{La}}+2M_{{1}_{n}}

ΔM=M1M2\Delta M =M_{1}-M_{2}

M1=235.04+1.0087M_{1}= 235.04+1.0087

M1=236.0487uM_{1}=236.0487 u

M2=(94.9058+138.9061+2×1.0087)uM_{2}=(94.9058+138.9061+2\times1.0087) u M2=235.8293uM_{2}=235.8293 u

ΔM=M1M2\Delta M =M_{1}-M_{2}

Put value

ΔM\Delta M =236.0487-235.8293 uu

ΔM=0.2194u\Delta M=0.2194 u

ΔE=ΔMc2\Delta E=\Delta Mc^2

ΔE=0.2194×931.5\Delta E=0.2194\times931.5

ΔE=204.3711mev\Delta E=204.3711 mev

1kg 235U fission energy release

K.E=6.02×10230.235×204.3711K.E=\frac{6.02\times 10^{23}}{0.235}\times{204.3711}

K.E=5.2353×1026MevK.E=5.2353\times 10^{26}MevK.E=5.2353×1023KevK.E=5.2353\times 10^{23}Kev


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS