Question #160179
Fission of one nucleus uranium-235 yields an average of approximately 200 MeV. What mass of uranium produces the energy of 3.30 x 10^10 J in fission?
1
Expert's answer
2021-02-22T10:29:03-0500

Energy yield =3.30×1010  J1.6×1013  J/MeV= \frac{3.30 \times 10^{10} \;J}{1.6 \times 10^{-13}\;J/MeV}

=2.0625×1023  MeV= 2.0625 \times 10^{23}\;MeV

Because A = 235 for uranium, one mole of this isotope has a mass of 235 g.

Let us take 1000 kg of uranium and we will calculate what amount of energy can be produced by this amount of uranium.

The number of nuclei in 1000 kg of uranium

N=1.0×106  g235  g×6.02×1023  nuclei=2.56×1027  nucleiN = \frac{1.0 \times 10^6 \;g}{235 \;g} \times 6.02 \times 10^{23}\;nuclei \\ = 2.56 \times 10^{27} \; nuclei

The total energy released when all nuclei undergo fission

E=NQ=2.56×1027  muclei×208  MeV/nucleus=5.32×1029  MeVE = NQ \\ = 2.56 \times 10^{27} \;muclei \times 208 \;MeV/nucleus \\ = 5.32 \times 10^{29} \;MeV

Proportion:

1000 kg of uranium = 5.32 \times 10^{29} \;MeV

x kg of uranium = 2.0625 \times 10^{29} \;MeV

x=1000  kg×2.0625×1029  MeV5.32×1029  MeV=0.387×103  kg=0.387  gx = \frac{1000 \;kg \times 2.0625 \times 10^{29} \;MeV}{5.32 \times 10^{29} \;MeV} \\ = 0.387 \times 10^{-3} \;kg \\ = 0.387 \;g

Answer: 0.387 g


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS