Question #158996
Calculate the period of a sound wave that sustains an intensity of 67w / m2 at an amplitude of 12m considering that its velocity is 34m / s and a fluid density of 89kg / m3.
1
Expert's answer
2021-01-27T19:29:58-0500

Let's first find the bulk modulus of the fluid:


v=Bρ,v=\sqrt{\dfrac{B}{\rho}},B=ρv2=89 kgm3(34 ms)2=1.03105 Pa.B=\rho v^2=89\ \dfrac{kg}{m^3}\cdot(34\ \dfrac{m}{s})^2=1.03\cdot10^5\ Pa.

Then, we can find the angular frequency of the sound wave from the formula:


I=12ρBω2A2,I=\dfrac{1}{2}\sqrt{\rho B}\omega^2A^2,ω=2IρBA2,\omega=\sqrt{\dfrac{2I}{\sqrt{\rho B}A^2}},ω=267 Wm289 kgm31.03105 Pa(12 m)2=0.017 rads.\omega=\sqrt{\dfrac{2\cdot67\ \dfrac{W}{m^2}}{\sqrt{89\ \dfrac{kg}{m^3}\cdot 1.03\cdot10^5\ Pa}\cdot(12\ m)^2}}=0.017\ \dfrac{rad}{s}.

Finally, we can find the period of the sound wave:


T=2πω=2π0.017 rads=370 s.T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{0.017\ \dfrac{rad}{s}}=370\ s.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS