We may use the Rydberg formula (https://en.wikipedia.org/wiki/Rydberg_formula):
1λ=R(1n12−1n22).\dfrac1\lambda = R\left( \dfrac{1}{n_1^2}-\dfrac{1}{n_2^2}\right).λ1=R(n121−n221). Here R≈1.097⋅107 m−1.R\approx 1.097\cdot 10^7 \,\mathrm{m}^{-1}.R≈1.097⋅107m−1.
In our case n1=2, n2=3.n_1 =2, \, n_2 = 3.n1=2,n2=3. Therefore,
1λ=1.097⋅107(122−132)⇒λ=6.563⋅10−7 m=656.3 nm.\dfrac1\lambda = 1.097\cdot10^7\left( \dfrac{1}{2^2}-\dfrac{1}{3^2}\right) \Rightarrow \lambda = 6.563\cdot10^{-7}\,\mathrm{m} = 656.3\,\mathrm{nm}.λ1=1.097⋅107(221−321)⇒λ=6.563⋅10−7m=656.3nm.
Such a line is called Balmer-α\alphaα or Hα.\mathrm{H}_{\alpha}.Hα.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments