Question #110905
A photon of wavelength 6000nm scatters from an electron at rest. The electron recoils with an energy of 60Kev . Calculate the energy of scattered photon and the angle through which it is scattered.
1
Expert's answer
2020-04-21T19:07:54-0400

Energy before scattering:


Eγ1=hcλγ1=3.311020 J, or 0.207 eV.E_{\gamma_1}=\frac{hc}{\lambda_{\gamma_1}}=3.31\cdot10^{-20}\text{ J, or 0.207 eV}.


According to law of conservation of energy:


Eγ1=Eγ2+Te.0.207=Eγ2+60103,Eγ2=0.20760000<0.E_{\gamma1}=E_{\gamma2}+Te.\\ 0.207=E_{\gamma2}+60\cdot10^3,\\ E_{\gamma2}=0.207-60000<0.


This is a bit impossible and, therefore, we cannot calculate the angle of scattering.

However, assume that the wavelength of the photon is 6 pm:


Eγ1=hcλγ1e=206.78 keV. Eγ1=Eγ2+Te.206.78=Eγ2+60,Eγ2=206.7860=146.78 keV.E_{\gamma_1}=\frac{hc}{\lambda_{\gamma_1}e}=206.78\text{ keV}.\\ \space\\ E_{\gamma1}=E_{\gamma2}+Te.\\ 206.78=E_{\gamma2}+60,\\ E_{\gamma2}=206.78-60=146.78\text{ keV}.

The wavelength after scattering will be


λγ2=hcEγ2=8.40 pm.\lambda_{\gamma2}=\frac{hc}{E_{\gamma2}}=8.40\text{ pm}.


The angle through which it is scattered:


λγ2λγ1=hcmec2(1cosθ), θ=arccos[1mech(λγ2λγ1)]=89.3.\lambda_{\gamma2}-\lambda_{\gamma1}=\frac{hc}{m_ec^2}(1-\text{cos}\theta),\\ \space\\ \theta=\text{arccos}\bigg[1-\frac{m_ec}{h}(\lambda_{\gamma2}-\lambda_{\gamma1})\bigg]=89.3^\circ.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS