The decay energy "Q" is given by conservation of mass-energy as
"\\frac{Q}{c^2}=M_U-M_{Th}-M_\\alpha".
We get
"\\frac{Q}{c^2}=238.050783-234.043595-4.002603=0.004585u"
If multiplied by the conversion factor "931.5" "MeV\/c^2" , then "Q\\approx4.27" "MeV".
So, the total energy released by this process "Q\\approx4.27" "MeV".
If the parent nucleus is at rest when it decays, the daughter nucleus and the particle must have equal and opposite momenta. If "p" is the magnitude of the momentum of either particle, the decay energy is
"Q=\\frac{p^2}{2M_D}+\\frac{p^2}{2M_\\alpha}=\\frac{p^2}{2M_D}(1+\\frac{M_D}{M_\\alpha})=E_D(1+\\frac{M_D}{M_\\alpha})".
"E_D=\\frac{Q}{1+\\frac{M_D}{M_\\alpha}}=\\frac{Q}{1+\\frac{A-4}{4}}=Q\\frac{4}{A}=4.27\\frac{4}{238}\\approx0.072" "MeV".
"E_D=\\frac{M_Dv^2}{2}\\to v=\\sqrt{\\frac{2E_D}{M_D}}=\\sqrt{\\frac{2\\cdot 0.072\\cdot 1.6\\cdot10^{-19}}{234\\cdot 1.66\\cdot10^{-27}}}\\approx243200" "m\/s".
Comments
Leave a comment