Ganymede is one of the moons of Jupiter. Ganymede’s period of revolution around Jupiter is 7.16 Earth days and an orbital radius of about 1.07 m. Find the mass of Jupiter.
Explanation & Calculation
GMmr2=mrω2=mr4π2T2M=1G.4π2.r3T2=16.67×10−11 Nm2kg−2.4π2.(1.07×106×103 m)3(7.16×24×3600 s)2=1.89×1027 kg\qquad\qquad \begin{aligned} \small G\frac{Mm}{r^2}&=\small mr\omega^2\\&=\small mr\frac{4\pi^2}{T^2}\\ \small M&=\small \frac{1}{G}.\frac{4\pi^2.r^3}{T^2}\\ &=\small \frac{1}{6.67\times10^{-11}\,Nm^2kg^{-2}}.\frac{4\pi^2.(1.07\times10^6\times10^3\,m)^3}{(7.16\times24\times3600\,s)^2}\\ &=\small 1.89\times10^{27}\,kg \end{aligned}Gr2MmM=mrω2=mrT24π2=G1.T24π2.r3=6.67×10−11Nm2kg−21.(7.16×24×3600s)24π2.(1.07×106×103m)3=1.89×1027kg
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments