If the satellite S2 at a distance 6850000 m from the center of the earth, determined the orbital period of the satellite.
[Mass of earth, M = 5.97x 〖10〗^24kg, G=6.67x〖10〗^(-11) 〖Nm〗^2 〖kg〗^(-2)
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small F&=\\small ma\\cdots[\\text{to the satellite towards the center of its orbit}]\\\\\n\\small G\\frac{M_em_s}{r^2}&=\\small m_sr\\omega^2\\\\\n\\small G\\frac{M_e}{r^2}&=\\small r\\omega^2\\\\\n\\small G\\frac{M_e}{r^2}&=\\small r(\\frac{2\\pi}{T})^2\\\\\n\\small T^2&=\\small4\\pi^2.r.\\frac{r^2}{GM_e}\\\\\n\\small T^2&=\\small 4\\pi^2.\\frac{r^2}{GM_e} \\\\\n\\small T&=\\small \\sqrt{4\\pi^2.\\frac{r^3}{GM_e}}\\\\\n&=\\small\\sqrt{4\\pi^2.\\frac{(6.85\\times10^6\\,m)^3}{(6.67\\times10^{-11}Nm^2kg^{-2})(5.97\\times10^{27}\\,kg)}}\\\\\n&=\\small \\sqrt{31866.27\\times\\frac{m^3}{kgms^{-2}.m^2.kg^{-2}.kg}}\\\\\n&=\\small \\sqrt{31866.27\\,s^2}\\\\\n&=\\small 178.51\\,s\n\\end{aligned}"
Comments
Leave a comment