The average density of a white dwarf of radius 109 cm is 106 gm/cm3 . Is general theory of relativity needed to study the dynamics of this star? What happens if the star shrinks to a radius thousand times smaller?
The mass of a white dwarf is
"\\displaystyle M = \\rho \\cdot V = \\rho \\cdot \\frac{4 \\pi R^3}{3} = 10^6 \\cdot 4.2 \\cdot 10^{27} = 4.2 \\cdot 10^{33} g = 4.2 \\cdot 10^{30} kg"
The Schwarzschild radius is
"\\displaystyle r_g = \\frac{2GM}{c^2} = \\frac{2 \\cdot 6.67 \\cdot 10^{-11} \\cdot 4.2 \\cdot 10^{30} }{9 \\cdot 10^{16}} =6.23 \\cdot 10^{3} \\, m = 6.23 \\cdot 10^{5} \\, cm \\approx 10^6 \\, cm"
"\\displaystyle\\frac{r_g}{R} \\approx \\frac{10^6}{10^9} = 10^{-3} = 0.1\\%" , therefore the effects of general relativity play a negligible role.
If the star shrinks to "R' = 10^6\\, cm" then
"\\displaystyle\\frac{r_g}{R'} \\approx \\frac{6.23 \\cdot 10^5}{10^6} = 0.623". In this case the general theory of relativity is needed to study the dynamics of this star.
Comments
Leave a comment