Scientists are developing a new space cannon to shoot objects from the surface of the Earth di-
rectly into a low orbit around the Earth. For testing purposes, a projectile is fired with an initial
velocity of 2.8 km/s vertically into the sky.
Calculate the height that the projectile reaches, ...
(a) assuming a constant gravitational deceleration of 9.81 m/s2
.
(b) considering the change of the gravitational force with height.
Note: Neglect the air resistance for this problem. Use 6.67×10−11 m3kg−1
s
−2
for the gravitational
Explanations & Calculations
a)
"\\qquad\\qquad\n\\begin{aligned}\n\\small E_{kinetic}&=\\small E_{potential}\\\\\n\\small \\frac{1}{2}mv^2 &=\\small mgH\\\\\n\\small H&=\\small \\frac{v^2}{2g}\\\\\n&=\\small \\frac{(2.8\\times10^{3})^2}{2\\times9.81}\\\\\n&=\\small 399.59\\,km\n\\end{aligned}"
b)
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{1}{2}mv^2 &=\\small \\int F dr =\\int mg' dr\\\\\n&=\\small \\int_{R_e}^H m\\frac{GM}{r^2 }.dr\\\\\n&=\\small GmM \\int\\frac{1}{r^2} dr\\\\\n&=\\small GmM \\bigg[-\\frac{1}{r}\\bigg]_{R_e}^H\\\\\n\\small H&=\\small 6797.32 \\, km\n\\end{aligned}"
Comments
Leave a comment