If the Sun expands, its mass remains constant. We assume the initial and final Suns to be spherically symmetric, so the mass is "M=\\langle\\rho\\rangle V = \\langle\\rho\\rangle \\dfrac43 \\pi R^3."
"M= \\langle\\rho_{\\text{init}}\\rangle \\dfrac43 \\pi R_{\\text{init}}^3 = \\langle\\rho_{\\text{fin}}\\rangle \\dfrac43 \\pi R_{\\text{fin}}^3" , "\\dfrac{ \\langle\\rho_{\\text{fin}}\\rangle}{ \\langle\\rho_{\\text{init}}\\rangle} = \\left(\\dfrac{R_{\\text{init}}}{R_{\\text{fin}}}\\right)^3 = \\left(\\dfrac{1}{200}\\right)^3 = 1.25\\cdot10^{-7}."
The average density of modern Sun is 1.4 g/sm3, so the final density will be
"1.4\\,\\mathrm{g\/sm}^3\\cdot1.25\\cdot10^{-7} = 1.75\\cdot10^{-7}\\,\\mathrm{g\/sm^3}."
Comments
Leave a comment