We have
M 1 = 3 m M_1=3^m M 1 = 3 m
R 1 = 72 R_1=72 R 1 = 72
M 2 = 8 m M_2=8^m M 2 = 8 m
R 2 = 6 R_2=6 R 2 = 6
Record the luminosities of each star
L 1 = 4 π R 1 2 σ T 1 4 L_1=4\pi R_1^{2}\sigma T_1^{4} L 1 = 4 π R 1 2 σ T 1 4
L 2 = 4 π R 2 2 σ T 2 4 L_2=4\pi R_2^{2}\sigma T_2^{4} L 2 = 4 π R 2 2 σ T 2 4
We apply the Pogson formula
L 2 L 1 = 2.51 2 M 1 − M 2 \frac{L_2}{L_1}=2.512^{M_1-M_2} L 1 L 2 = 2.51 2 M 1 − M 2
Substitute luminosities
4 π R 2 2 σ T 2 4 4 π R 1 2 σ T 1 4 = 2.51 2 M 1 − M 2 \frac{4\pi R_2^{2}\sigma T_2^{4}}{4\pi R_1^{2}\sigma T_1^{4}}=2.512^{M_1-M_2} 4 π R 1 2 σ T 1 4 4 π R 2 2 σ T 2 4 = 2.51 2 M 1 − M 2
Simplify the expression
R 2 2 T 2 4 R 1 2 T 1 4 = 2.51 2 3 − 8 \frac{ R_2^{2} T_2^{4}}{R_1^{2}T_1^{4}}=2.512^{3-8} R 1 2 T 1 4 R 2 2 T 2 4 = 2.51 2 3 − 8
R 2 2 T 2 4 R 1 2 T 1 4 = 2.51 2 − 5 = 0.01 \frac{ R_2^{2} T_2^{4}}{R_1^{2}T_1^{4}}=2.512^{-5}=0.01 R 1 2 T 1 4 R 2 2 T 2 4 = 2.51 2 − 5 = 0.01
Where will we write
T 2 T 1 = 0.01 ⋅ R 1 2 R 2 2 4 \frac{ T_2}{T_1}=\sqrt[4]{0.01 \cdot \frac{R_1^{2}}{R_2^{2}}} T 1 T 2 = 4 0.01 ⋅ R 2 2 R 1 2
T 2 T 1 = 0.01 ⋅ 7 2 2 6 2 4 = 0.01 ⋅ 144 4 = 1.095 \frac{ T_2}{T_1}=\sqrt[4]{0.01 \cdot \frac{72^{2}}{6^{2}}}=\sqrt[4]{0.01 \cdot 144}=1.095 T 1 T 2 = 4 0.01 ⋅ 6 2 7 2 2 = 4 0.01 ⋅ 144 = 1.095
Comments