Answer to Question #102695 in Astronomy | Astrophysics for sakshi

Question #102695
A comet has an aphelion distance of 6.1 × 10¹¹m and perihelion distance of 6.1 × 10¹¹m. The mass of the sun is 2.0 × 10^30 .
1
Expert's answer
2020-02-26T10:20:38-0500

Solution. Find semi-major axis a  


a=ra+rp2=6.1×1011+6.1×10112=6.1×1011ma=\frac{r_a+r_p}{2}=\frac{6.1\times10^{11}+6.1\times10^{11}}{2}=6.1\times10^{11}m


where ra is aphelion distance; rp is perihelion distance.

Find the orbital period T of a comet


a3T2=G(M+m)4π2\frac{a^3}{T^2}=\frac{G(M+m)}{4\pi^2}

where M=2.0 × 10^30kg is the mass of the sun; m is a comet mass; (M>>m). Therefore


T=2πa3GM=2π(6.1×1011)36.67×1011×2×1030=2.59×108s8.22yearsT=\frac {2\pi \sqrt{a^3}}{GM}=\frac {2\pi \sqrt{(6.1\times10^{11})^3}}{\sqrt{6.67\times10^{-11} \times 2\times 10^{30}}}=2.59 \times 10^{8}s\approx 8.22 years

Average orbit speed


v=2πaT=2π×6.1×10112.59×10814/55kmsv=\frac{2\pi a}{T}=\frac{2\pi\times 6.1\times10^{11}}{2.59 \times 10^{8}}\approx 14/55 \frac{km}{s}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment