Solution. Find semi-major axis a
"a=\\frac{r_a+r_p}{2}=\\frac{6.1\\times10^{11}+6.1\\times10^{11}}{2}=6.1\\times10^{11}m"
where ra is aphelion distance; rp is perihelion distance.
Find the orbital period T of a comet
"\\frac{a^3}{T^2}=\\frac{G(M+m)}{4\\pi^2}" where M=2.0 × 10^30kg is the mass of the sun; m is a comet mass; (M>>m). Therefore
"T=\\frac {2\\pi \\sqrt{a^3}}{GM}=\\frac {2\\pi \\sqrt{(6.1\\times10^{11})^3}}{\\sqrt{6.67\\times10^{-11} \\times 2\\times 10^{30}}}=2.59 \\times 10^{8}s\\approx 8.22 years" Average orbit speed
"v=\\frac{2\\pi a}{T}=\\frac{2\\pi\\times 6.1\\times10^{11}}{2.59 \\times 10^{8}}\\approx 14\/55 \\frac{km}{s}"
Comments
Leave a comment