Question #275915

. Suppose you have a 9V battery, a 2μF capacitor, and a 7.40μF capacitor. 

(a) Find the charge and energy stored if the capacitors are connected to the 

battery in series. (b) Do the same for a parallel connection.



1
Expert's answer
2021-12-06T15:58:27-0500

(a) Series capacitors


1CTS=1C1+1C2=12×106F+17.4×106F\dfrac{1}{C_{TS}}=\dfrac{1}{C_1}+\dfrac{1}{C_2}=\dfrac{1}{2\times 10^{-6}F}+\dfrac{1}{7.4\times 10^{-6}F}


=4.77.4×106F=\dfrac{4.7}{7.4\times 10^{-6}F}


QS=CTSU=7.4×106F4.79VQ_S=C_{TS}U=\dfrac{7.4\times 10^{-6}F}{4.7}\cdot9V

14.17×106C=14.17μC\approx14.17\times 10^{-6} C=14.17\mu C

ES=CTSU22=7.4×106(9V)22(4.7)E_S=\dfrac{C_{TS}U^2}{2}=\dfrac{7.4\times 10^{-6}\cdot(9V)^2}{2(4.7)}

63.766×106J=63.766μJ\approx63.766\times 10^{-6} J=63.766\mu J


(b) Parallel  capacitors


CTP=C1+C2=2×106F+7.4×106FC_{TP}=C_1+C_2=2\times 10^{-6}F+7.4\times 10^{-6}F

=9.4×106F=9.4\times 10^{-6}F

QP=CTPU=9.4×106F9VQ_P=C_{TP}U=9.4\times 10^{-6}F\cdot9V


=84.6×106C=84.6μC=84.6\times 10^{-6} C=84.6\mu C

EP=CTPU22=9.4×106(9V)22E_P=\dfrac{C_{TP}U^2}{2}=\dfrac{9.4\times 10^{-6}\cdot(9V)^2}{2}

=0.3807×103J=0.3807mJ=0.3807\times 10^{-3} J=0.3807m J


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS