Rx=i∑Fxi=0=>−1312Q+54P+80kN=0
Ry=i∑Fyi=0=>−135Q+53P−20kN=0 Solving these equations simultaneously gives
−1312Q+54P+80kN=0
−133Q+51P=135Q−53P
Q=1013P
−56P+54P+80kN=0
P=200kN,Q=260kN Given that CR=500kN⋅m counterclockwise, and choosing point A as the moment center, we have
CR=i∑MAi
=>500kN⋅m=−20kN(3m)−C+80kN(4m)
+53P(6m)+54P(6m) Substitute P=200kN
C=−500kN⋅m−60kN⋅m+320kN⋅m
+1920kN⋅m
C=1680kN⋅mBecause the values for P,Q, and C are positive, each force acts in the direction shown in the figure.
P=200kN,Q=260kN
C=1680kN⋅m
Comments