Rx=i∑Fxi=0=>−1312Q+54P+80kN=0 
Ry=i∑Fyi=0=>−135Q+53P−20kN=0 Solving these equations simultaneously gives
−1312Q+54P+80kN=0 
−133Q+51P=135Q−53P 
Q=1013P 
−56P+54P+80kN=0 
P=200kN,Q=260kN Given that CR=500kN⋅m counterclockwise, and choosing point A  as the moment center, we have
 
CR=i∑MAi 
=>500kN⋅m=−20kN(3m)−C+80kN(4m) 
+53P(6m)+54P(6m) Substitute P=200kN 
C=−500kN⋅m−60kN⋅m+320kN⋅m 
+1920kN⋅m 
C=1680kN⋅mBecause the values for P,Q,  and C are positive, each force acts in the direction shown in the figure.
P=200kN,Q=260kN  
C=1680kN⋅m                             
Comments