Question #124077
A particle of mass 2kg is placed on a rough plane inclined at an angle 35° to the horizontal.
The coefficient of friction is 2
3
. Find the least force parallel to the plane that is required
(i) to hold the particle at rest
(ii) to make the particle slide up the plane.
1
Expert's answer
2020-06-29T18:08:40-0400

Ffr=μNF_{fr}=\mu N



R=mg+N+Ffr+F\vec{R}=m\vec{g}+\vec{N}+\vec{F_{fr}}+\vec{F}






(i) According to second Newton's Law


R=0\vec{R}=0

mg+N+Ffr1+F=0m\vec{g}+\vec{N}+\vec{F_{fr1}}+\vec{F}=0

Ox:μNF+mgsinθ=0Ox: -\mu N-F+mg\sin\theta=0

Oy:Nmgcosθ=0Oy:N-mg\cos\theta=0

F=mgsinθμmgcosθ=mg(sinθμcosθ)F=mg\sin\theta-\mu mg\cos\theta=mg(\sin\theta-\mu \cos\theta)

F=2 kg9.81 m/s2(sin35°0.23cos35°)7.557NF=2\ kg\cdot9.81\ m/s^2(\sin35\degree-0.23\cos35\degree)\approx7.557 N

(ii) According to second Newton's Law


R=0\vec{R}=0

mg+N+Ffr2+F=0m\vec{g}+\vec{N}+\vec{F_{fr2}}+\vec{F}=0

Ox:μNF+mgsinθ=0Ox: \mu N-F+mg\sin\theta=0

Oy:Nmgcosθ=0Oy:N-mg\cos\theta=0

F=mgsinθ+μmgcosθ=mg(sinθ+μcosθ)F=mg\sin\theta+\mu mg\cos\theta=mg(\sin\theta+\mu \cos\theta)

F=2 kg9.81 m/s2(sin35°+0.23cos35°)14.950NF=2\ kg\cdot9.81\ m/s^2(\sin35\degree+0.23\cos35\degree)\approx14.950 N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS