F f r = μ N F_{fr}=\mu N F f r = μ N
R ⃗ = m g ⃗ + N ⃗ + F f r ⃗ + F ⃗ \vec{R}=m\vec{g}+\vec{N}+\vec{F_{fr}}+\vec{F} R = m g + N + F f r + F
(i) According to second Newton's Law
R ⃗ = 0 \vec{R}=0 R = 0
m g ⃗ + N ⃗ + F f r 1 ⃗ + F ⃗ = 0 m\vec{g}+\vec{N}+\vec{F_{fr1}}+\vec{F}=0 m g + N + F f r 1 + F = 0
O x : − μ N − F + m g sin θ = 0 Ox: -\mu N-F+mg\sin\theta=0 O x : − μ N − F + m g sin θ = 0
O y : N − m g cos θ = 0 Oy:N-mg\cos\theta=0 O y : N − m g cos θ = 0
F = m g sin θ − μ m g cos θ = m g ( sin θ − μ cos θ ) F=mg\sin\theta-\mu mg\cos\theta=mg(\sin\theta-\mu \cos\theta) F = m g sin θ − μ m g cos θ = m g ( sin θ − μ cos θ )
F = 2 k g ⋅ 9.81 m / s 2 ( sin 35 ° − 0.23 cos 35 ° ) ≈ 7.557 N F=2\ kg\cdot9.81\ m/s^2(\sin35\degree-0.23\cos35\degree)\approx7.557 N F = 2 k g ⋅ 9.81 m / s 2 ( sin 35° − 0.23 cos 35° ) ≈ 7.557 N
(ii) According to second Newton's Law
R ⃗ = 0 \vec{R}=0 R = 0
m g ⃗ + N ⃗ + F f r 2 ⃗ + F ⃗ = 0 m\vec{g}+\vec{N}+\vec{F_{fr2}}+\vec{F}=0 m g + N + F f r 2 + F = 0
O x : μ N − F + m g sin θ = 0 Ox: \mu N-F+mg\sin\theta=0 O x : μ N − F + m g sin θ = 0
O y : N − m g cos θ = 0 Oy:N-mg\cos\theta=0 O y : N − m g cos θ = 0
F = m g sin θ + μ m g cos θ = m g ( sin θ + μ cos θ ) F=mg\sin\theta+\mu mg\cos\theta=mg(\sin\theta+\mu \cos\theta) F = m g sin θ + μ m g cos θ = m g ( sin θ + μ cos θ )
F = 2 k g ⋅ 9.81 m / s 2 ( sin 35 ° + 0.23 cos 35 ° ) ≈ 14.950 N F=2\ kg\cdot9.81\ m/s^2(\sin35\degree+0.23\cos35\degree)\approx14.950 N F = 2 k g ⋅ 9.81 m / s 2 ( sin 35° + 0.23 cos 35° ) ≈ 14.950 N
Comments