Let
"\\overrightarrow{v}_{p\/g}=" the velocity of the plane relative to the ground (due west),
"\\overrightarrow{v}_{p\/a}=" the velocity of the plane relative to the air ("|\\overrightarrow{v}_{p\/a}|=320.0\\ km\/h" ), and
"\\overrightarrow{v}_{a\/g}=" the velocity of the air relative to the ground ("|\\overrightarrow{v}_{a\/g}|=80.0\\ km\/h," due south).
The velocity vector addition
a)
"\\sin \\theta={|\\overrightarrow{v}_{a\/g}|\\over |\\overrightarrow{v}_{p\/a}|}={40 km\/h\\over 320 km\/h}=0.25""\\theta=14.5\\degree,\\text{north of west}"
b)
"=\\sqrt{(320 \\ km\/h)^2-(80\\ km\/h)^2}=80\\sqrt{15}\\ km\/h\\approx"
"\\approx310\\ km\/h"
Comments
Leave a comment