We are given "\\phi(x,y,z,) = 2 x^2 y - x z n^3".
The Laplacian of "\\phi(x,y,z)" in Euclidean coordinates is "\\triangle \\phi(x,y,z) = \\frac{\\partial^2 \\phi}{\\partial x^2} + \\frac{\\partial^2 \\phi}{\\partial y^2} + \\frac{\\partial^2 \\phi}{\\partial z^2}". Let us calculate the derivatives:
"\\frac{\\partial \\phi}{\\partial x} = 4 x y - z n^3", "\\frac{\\partial^2 \\phi}{\\partial x^2} = 4 y",
"\\frac{\\partial \\phi}{\\partial y} = 2 x^2", "\\frac{\\partial^2 \\phi}{\\partial y^2} = 0",
"\\frac{\\partial \\phi}{\\partial z} = - x n^3", "\\frac{\\partial^2 \\phi}{\\partial z^2} = 0".
Hence, "\\triangle \\phi(x,y,z) = 4 y".
Comments
Leave a comment