Evaluate ∇2U, given that Ux,y,z=xy2z3
Select one:
A. y2z3+2xz3+6xy2z
B. x2y2z+2xz3-6xy2z
C. y2z3+2xyz3+3xy2z2
D. 2xz3+6xy2z
U(x,y,z)=xy2z3∇2U(x,y,z)=∂2U∂x2+∂2U∂y2+∂2U∂z2==0+2xz3+6xy2z=2xz3+6xy2zD is correctU\left( x,y,z \right) =xy^2z^3\\\nabla ^2U\left( x,y,z \right) =\frac{\partial ^2U}{\partial x^2}+\frac{\partial ^2U}{\partial y^2}+\frac{\partial ^2U}{\partial z^2}=\\=0+2xz^3+6xy^2z=2xz^3+6xy^2z\\D\,\,is\,\,correctU(x,y,z)=xy2z3∇2U(x,y,z)=∂x2∂2U+∂y2∂2U+∂z2∂2U==0+2xz3+6xy2z=2xz3+6xy2zDiscorrect
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments