x = a sin φ , y = a cos φ , z = 0 , φ : 0 → 2 π f = ( a 2 sin 2 φ , a 2 cos 2 φ , 0 ) d l = ( a cos φ , − a sin φ , 0 ) ∮ f d l = ∫ 0 2 π ( a 3 sin 2 φ cos φ − a 3 cos 2 φ sin φ ) d φ = 0 r o t ( f ) = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z x 2 y 2 z 2 ∣ = 0 ∬ r o t ( f ) d S = 0 S t o k e s f o r m u l a h o l d s . x=\mathrm{a}\sin \varphi ,y=\mathrm{a}\cos \varphi ,z=0,\varphi :0\rightarrow 2\pi \\f=\left( a^2\sin ^2\varphi ,a^2\cos ^2\varphi ,0 \right) \\dl=\left( \mathrm{a}\cos \varphi ,-\mathrm{a}\sin \varphi ,0 \right) \\\oint{fdl}=\int_0^{2\pi}{\left( a^3\sin ^2\varphi \cos \varphi -a^3\cos ^2\varphi \sin \varphi \right) d\varphi}=0\\rot\left( f \right) =\left| \begin{matrix} i& j& k\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ x^2& y^2& z^2\\\end{matrix} \right|=0\\\iint{rot\left( f \right) dS}=0\\Stokes\,\,formula\,\,holds. x = a sin φ , y = a cos φ , z = 0 , φ : 0 → 2 π f = ( a 2 sin 2 φ , a 2 cos 2 φ , 0 ) d l = ( a cos φ , − a sin φ , 0 ) ∮ fd l = ∫ 0 2 π ( a 3 sin 2 φ cos φ − a 3 cos 2 φ sin φ ) d φ = 0 ro t ( f ) = ∣ ∣ i ∂ x ∂ x 2 j ∂ y ∂ y 2 k ∂ z ∂ z 2 ∣ ∣ = 0 ∬ ro t ( f ) d S = 0 St o k e s f or m u l a h o l d s .
Comments