Determine whether 𝐹 is conservative vector field. If so, find a potential
function for it is
f(x,y,z)=x^yi+5xy^2j
f(x,y,z)=xyi+5xy2jrot(f)=∣ijk∂∂x∂∂y∂∂zxyxy20∣=(y2−xylnx)k≠0f\left( x,y,z \right) =x^yi+5xy^2j\\rot\left( f \right) =\left| \begin{matrix} i& j& k\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ x^y& xy^2& 0\\\end{matrix} \right|=\left( y^2-x^y\ln x \right) k\ne 0f(x,y,z)=xyi+5xy2jrot(f)=∣∣i∂x∂xyj∂y∂xy2k∂z∂0∣∣=(y2−xylnx)k=0
The field is not conservative.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments