Let E:=Exi^+Eyj^+Ezk^ and H:=Hxi^+Hyj^+Hzk^ be two vectors assumed to have continuous partial derivatives (of second order at least) with respect to position and time. Suppose further that E and H satisfy the equations:∇⋅E=0,∇⋅H=0,∇×E=−1c∂H∂t,∇×H=1c∂E∂tprove that E and H satisfy the equation∇2Ei=1c2∂2Ei∂t2 and ∇2Hi=1c2∂2Hi∂t2Here, i=x,y or z.
∇×(∇×E)=−1c∂(∇×H)∂t=−1c2∂E2∂t2∇×(∇×E)=-\frac{1}{c}\frac{\partial (∇×H)}{\partial t}=-\frac{1}{c^2}\frac{\partial E^2}{\partial t^2}∇×(∇×E)=−c1∂t∂(∇×H)=−c21∂t2∂E2
∇×(∇×E)=∇(∇⋅E)−∇2E=−∇2E∇×(∇×E)=∇(∇⋅E)−∇^2E=−∇^2E∇×(∇×E)=∇(∇⋅E)−∇2E=−∇2E
∇2E=1c2∂E2∂t2∇^2E=\frac{1}{c^2}\frac{\partial E^2}{\partial t^2}∇2E=c21∂t2∂E2
∇2Ei=1c2∂Ei2∂t2∇^2E_i=\frac{1}{c^2}\frac{\partial E_i^2}{\partial t^2}∇2Ei=c21∂t2∂Ei2
∇×(∇×H)=1c∂(∇×E)∂t=−1c2∂H2∂t2∇×(∇×H)=\frac{1}{c}\frac{\partial (∇×E)}{\partial t}=-\frac{1}{c^2}\frac{\partial H^2}{\partial t^2}∇×(∇×H)=c1∂t∂(∇×E)=−c21∂t2∂H2
∇×(∇×H)=∇(∇⋅H)−∇2H=−∇2H∇×(∇×H)=∇(∇⋅H)−∇^2H=−∇^2H∇×(∇×H)=∇(∇⋅H)−∇2H=−∇2H
∇2H=1c2∂H2∂t2∇^2H=\frac{1}{c^2}\frac{\partial H^2}{\partial t^2}∇2H=c21∂t2∂H2
∇2Hi=1c2∂Hi2∂t2∇^2H_i=\frac{1}{c^2}\frac{\partial H_i^2}{\partial t^2}∇2Hi=c21∂t2∂Hi2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments