Question #278380

Let r=xi^+yj^+zk^ and r=r .Show that:∇(lnr)=rr2. and∇×(rnr)=0.


1
Expert's answer
2021-12-13T13:51:08-0500

(a)  Let   r=xi  +  yj+zk  and  r=r=x2+y 2 +z2Such   that  ln(r)=ln(x2+y 2 +z2)Recall  that  =ix  +  jy+kzThen  (ln(r))=(ix  +  jy+kz)ln(r)(ln(r))=(ix  +  jy+kz)ln(x2+y 2 +z2)(ln(r))=(iln(x2+y 2 +z2)x  +  jln(x2+y 2 +z2)y+kln(x2+y 2 +z2)z)(ln(r))=(irx1x2+y 2 +z2  +  jry1x2+y 2 +z2+krz1x2+y 2 +z2)(ln(r))=1x2+y 2 +z2(ix  +  jy+kz)  =   r(r)2(b)   Let    r=r=x2+y 2 +z2   and    (r)n=(x2+y 2 +z2)n (r)n. (r)  =  (x2+y 2 +z2)n(x2+y 2 +z2)Then   ×( (r)n. (r))  =  ??Using  the  identity  that  ×( A. B)  =  A×(B )   B×( A)    Then  ×( (r)n. (r))  =   (r)n×((r) )   (r)×( (r)n)  ×( (r)n. (r))  =   (r)n×((r) )   (r)×( (r)n)     =   00    =  0  (Since  (r)=constant )\left(a\right)\ \ Let\ \ \ \overrightarrow{r}=x\overrightarrow{i}\ \ +\ \ y\overrightarrow{j}+z\overrightarrow{k}\ \ and\ \ \overline{r}=\left\|r\right\|=\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}} \\ Such\ \ \ that\ \ \mathrm{ln}\left(\overline{r}\right)=\mathrm{ln}\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right) \\ \mathrm{Re}call\ \ that\ \ \mathrm{\nabla }=\overrightarrow{i}\frac{\partial }{\partial x}\ \ +\ \ \overrightarrow{j}\frac{\partial }{\partial y}+\overrightarrow{k}\frac{\partial }{\partial z} \\ Then\ \ \mathrm{\nabla }\left(\mathrm{ln}\left(\overline{r}\right)\right)=\left(\overrightarrow{i}\frac{\partial }{\partial x}\ \ +\ \ \overrightarrow{j}\frac{\partial }{\partial y}+\overrightarrow{k}\frac{\partial }{\partial z}\right)\mathrm{ln}\left(\overline{r}\right) \\ \mathrm{\nabla }\left(\mathrm{ln}\left(\overline{r}\right)\right)=\left(\overrightarrow{i}\frac{\partial }{\partial x}\ \ +\ \ \overrightarrow{j}\frac{\partial }{\partial y}+\overrightarrow{k}\frac{\partial }{\partial z}\right)\mathrm{ln}\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right) \\ \mathrm{\nabla }\left(\mathrm{ln}\left(\overline{r}\right)\right)=\left(\overrightarrow{i}\frac{\partial \mathrm{ln}\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right)}{\partial x}\ \ +\ \ \overrightarrow{j}\frac{\partial \mathrm{ln}\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right)}{\partial y}+\overrightarrow{k}\frac{\partial \mathrm{ln}\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right)}{\partial z}\right) \\ \mathrm{\nabla }\left(\mathrm{ln}\left(\overline{r}\right)\right)=\left(\overrightarrow{i}\frac{\partial r}{\partial x}\frac{\mathrm{1}}{\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}}\ \ +\ \ \overrightarrow{j}\frac{\partial r}{\partial y}\frac{\mathrm{1}}{\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}}+\overrightarrow{k}\frac{\partial r}{\partial z}\frac{\mathrm{1}}{\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}}\right) \\ \mathrm{\nabla }\left(\mathrm{ln}\left(\overline{r}\right)\right)=\frac{\mathrm{1}}{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\left(\overrightarrow{i}x\ \ +\ \ \overrightarrow{j}y+\overrightarrow{k}z\right)\ \ =\ \ \frac{\ \overrightarrow{r}}{{\left(\overline{r}\right)}^{\mathrm{2}}} \\ \\ \\ \\ \\ \left(b\right)\ \ \ Let\ \ \ \ \overline{r}=\left\|r\right\|=\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\ \ \ and\ \ \ \ {\left(\overline{r}\right)}^n={\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right)}^n \\ \\ \ {\left(\overline{r}\right)}^n.\ \left(\overline{r}\right)\ \ =\ \ {\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right)}^n\left(\sqrt{x^{\mathrm{2}}+y{}^{\mathrm{2}}_{\mathrm{\ }}{\mathrm{\ }}+z^{\mathrm{2}}}\right) \\ Then\ \ \ \\ \mathrm{\nabla }\times \left(\ {\left(\overline{r}\right)}^n.\ \left(\overline{r}\right)\right)\ \ =\ \ \mathrm{??} \\ U\mathrm{sin}g\ \ the\ \ identity\ \ that\ \ \mathrm{\nabla }\times \left(\ A.\ B\right)\ \ =\ \ A\mathrm{\nabla }\times \left(B\ \right)\ \ -\ B\mathrm{\nabla }\times \left(\ A\right) \\ \ \ \ \ \\ Then\ \ \mathrm{\nabla }\times \left(\ {\left(\overline{r}\right)}^n.\ \left(\overline{r}\right)\right)\ \ =\ \ \ {\left(\overline{r}\right)}^n\mathrm{\nabla }\times \left(\left(\overline{r}\right)\ \right)\ \ -\ \left(\overline{r}\right)\mathrm{\nabla }\times \left(\ {\left(\overline{r}\right)}^n\right)\ \ \\ \\ \mathrm{\nabla }\times \left(\ {\left(\overline{r}\right)}^n.\ \left(\overline{r}\right)\right)\ \ =\ \ \ {\left(\overline{r}\right)}^n\mathrm{\nabla }\times \left(\left(\overline{r}\right)\ \right)\ \ -\ \left(\overline{r}\right)\mathrm{\nabla }\times \left(\ {\left(\overline{r}\right)}^n\right)\ \ \ \ \ =\ \ \ 0-0\ \ \ \ =\ \ 0\ \ \left(\mathrm{Sin}ce\ \ \left(\overline{r}\right)=cons\mathrm{tan}t\ \right) \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS