Question #250191

 Find the angles between the force F = 1200𝐒 + 800𝐣 βˆ’ 1500𝐀 N and the x-, y-, and z-axes. Show your results on a sketch of the coordinate system.


1
Expert's answer
2021-10-13T07:41:09-0400
Fβƒ—=1200𝐒+800π£βˆ’1500𝐀\vec F = 1200𝐒 + 800𝐣 βˆ’ 1500𝐀

∣Fβƒ—βˆ£=(1200)2+(800)2+(βˆ’1500)2=100433(N)|\vec F|=\sqrt{(1200)^2+(800)^2+(-1500)^2}=100\sqrt{433}(N)

Ξ±=cosβ‘βˆ’1(Fx∣Fβƒ—βˆ£)=cosβ‘βˆ’1(1200100433)β‰ˆ54.78Β°\alpha=\cos^{-1}\bigg(\dfrac{F_x}{|\vec F|}\bigg)=\cos^{-1}\bigg(\dfrac{1200}{100\sqrt{433}}\bigg)\approx54.78\degree

Ξ²=cosβ‘βˆ’1(Fy∣Fβƒ—βˆ£)=cosβ‘βˆ’1(800100433)β‰ˆ67.39Β°\beta=\cos^{-1}\bigg(\dfrac{F_y}{|\vec F|}\bigg)=\cos^{-1}\bigg(\dfrac{800}{100\sqrt{433}}\bigg)\approx67.39\degree

Ξ³=cosβ‘βˆ’1(Fz∣Fβƒ—βˆ£)=cosβ‘βˆ’1(βˆ’1500100433)β‰ˆ136.125Β°\gamma=\cos^{-1}\bigg(\dfrac{F_z}{|\vec F|}\bigg)=\cos^{-1}\bigg(\dfrac{-1500}{100\sqrt{433}}\bigg)\approx136.125\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS