Question #122825
What do you understand by unit tangent vector
1
Expert's answer
2020-06-23T14:34:52-0400

Given a smooth vector-valued function  r(t)\overrightarrow{r}(t). Any vector parallel to r(t0)\overrightarrow{r}'(t_0) is tangent to the graph of r(t)\overrightarrow{r}(t) at t=t0.t=t_0. It is often useful to consider just the direction of r(t)\overrightarrow{r}'(t) and not its magnitude. 

Therefore we are interested in the unit vector in the direction of r(t)\overrightarrow{r}'(t)

This leads to a definition.

Let r(t)\overrightarrow{r}(t) be a smooth function on an open interval I.I. The unit tangent vector T(t)\overrightarrow{T}(t) is


T(t)=1r(t)r(t),r(t)0\overrightarrow{T}(t)={1\over ||\overrightarrow{r}'(t)||}\overrightarrow{r}'(t), ||\overrightarrow{r}'(t)||\not=0

Let v(t)=r(t)\overrightarrow{v}(t)=\overrightarrow{r}'(t) denote the velocity vector. Then we define the unit tangent vector by as the unit vector in the direction of the velocity vector.


T(t)=1v(t)v(t),v(t)0\overrightarrow{T}(t)={1\over ||\overrightarrow{v}(t)||}\overrightarrow{v}(t), ||\overrightarrow{v}(t)||\not=0

The tangential component of acceleration is in the direction of the unit tangent vector


aτ(t)=aT(t)=a1v(t)v(t),v(t)0\overrightarrow{a}_\tau(t)=a\cdot\overrightarrow{T}(t)=a\cdot{1\over ||\overrightarrow{v}(t)||}\overrightarrow{v}(t), ||\overrightarrow{v}(t)||\not=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS