Let us recall the propertied of Levi-Civata's symbol ϵijk in three dimension,where i,j,k∈{1,2,3} .
Properties,
ϵ123=ϵ231=ϵ312=1(⋆)ϵ321=ϵ213=ϵ132=−1(⋆⋆)
ϵijk=0(†)
if at least two of i,j,k are equal.
If we exchange any two consecutive indices like i↔j then ϵijk=−ϵjik(♠)
The cross product of any two vector in terms of Levi-Civata's symbol is defined as bellow,
[A×B]i=j=1∑3k=1∑3ϵijkAjBk(††)
where,subscript i,j,k of any vector denotes respectively ith,jth,kth component of that vector.
Now, denote
∂i=∂xi∂ Let the vector a=a1e1^+a2e2^+a3e3^ ,where ei^ is the orthogonal unit vector for all i∈{1,2,3} .
Thus,from (†),(††),(⋆),(⋆⋆) and above notation, we get ,
∇⋅(∇×a)=i=1∑3∂i(j=1∑3k=1∑3ϵijk∂jak)∇⋅(∇×a)=i=1∑3j=1∑3k=1∑3ϵijk∂i∂jak∇⋅(∇×a)=i=1∑3j=1∑3k=1∑3−ϵjik∂j∂iak(from,♠)∇⋅(∇×a)=i=1∑3j=1∑3k=1∑3−ϵijk∂i∂jak∇⋅(∇×a)=−∇⋅(∇×a)⟹∇⋅(∇×a)=0 Hence, we are done.
Comments