Answer to Question #88929 in Trigonometry for Manu Chemjong

Question #88929
cos^3a sin3a+sin^3a cos3a=3/4sin4a
1
Expert's answer
2019-05-02T02:36:57-0400
sin3αcos(3α)+cos3αsin(3α)=\text{sin}^3\alpha \text{cos}(3\alpha) + \text{cos}^3\alpha \text{sin}(3\alpha)=

=sin3α(4cos3α3cosα)+cos3α(3sinα4sin3α)==\text{sin}^3\alpha(4\text{cos}^3\alpha-3\text{cos}\alpha)+\text{cos}^3\alpha(3\text{sin}\alpha-4\text{sin}^3\alpha)=

=4sin3αcos3α3sin3αcosα+3cos3αsinα4cos3αsin3α==4\text{sin}^3\alpha\text{cos}^3\alpha-3\text{sin}^3\alpha\text{cos}\alpha+3\text{cos}^3\alpha\text{sin}\alpha-4\text{cos}^3\alpha\text{sin}^3\alpha=

=3sinαcosα(cos2αsin2α)==3\text{sin}\alpha\text{cos}\alpha(\text{cos}^2\alpha-\text{sin}^2\alpha)=

=32sin(2α)cos(2α)=34sin(4α)=\frac{3}{2}\text{sin}(2\alpha)\text{cos}(2\alpha)=\frac{3}{4}\text{sin}(4\alpha)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment