Answer to Question #86085 in Trigonometry for Ice Prinxxx

Question #86085
If cosΦ = C, express in terms of C tan² Φ + 2 cos Φ
1
Expert's answer
2019-03-13T11:16:32-0400

Solution:

tan2Φ+2cosΦ=sin2Φcos2Φ+2cosΦ=1cos2Φcos2Φ+2cosΦ\tan^2\Phi+2\cos\Phi=\frac{\sin^2\Phi} {\cos^2\Phi} +2\cos\Phi=\frac{1-\cos^2\Phi} {\cos^2\Phi} +2\cos\Phi

Let's take into account that cosΦ=C:\cos\Phi=C:


1cos2Φcos2Φ+2cosΦ=1C2C2+2C=1C2+2C1\frac{1-\cos^2\Phi} {\cos^2\Phi} +2\cos\Phi=\frac{1-C^2} {C^2} +2C=\frac{1} {C^2}+2C-1

Answer:

1C2+2C1\frac{1} {C^2}+2C-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment