Find the exact values of the trigonometric functions of a/2 and 2a by using half-angle and double angle formulas.
1) sin(a) = 4/5, and a in quadrant 1
1) Use half-angle identity for sine:
Find "cos a:"
Since "a" is in the quadrant I, "cos a>0, cos a=\\frac{3}{5}"
Hence,
Since "a" is in the quadrant I, "sin \\frac{a}{2}>0, sin \\frac{a}{2}=\\sqrt{\\frac{1}{5}}"
2) Use half-angle identity for cosine:
Since "a" is in the quadrant I, "cos \\frac{a}{2}>0, cos \\frac{a}{2}=\\sqrt{\\frac{4}{5}}"
3) Half-angle for tangent and cotangent:
4) Use double-angle identity for sine:
5) Use double-angle identity for cosine:
6) Double-angle for tangent and cotangent:
"cot2a=cos2a:sin 2a=-\\frac{7}{25}:\\frac{24}{25}=-\\frac{7}{24}"
Answer: "sin \\frac{a}{2}=\\sqrt{\\frac{1}{5}}, cos \\frac{a}{2}=\\sqrt{\\frac{4}{5}}, tan \\frac{a}{2}=\\frac{1}{2}, cot\\frac{a}{2}=2,"
"sin 2a=\\frac{24}{25}, cos 2a=-\\frac{7}{25}, tan 2a=-\\frac{24}{7}, cot 2a=-\\frac{7}{24}"
Comments
Leave a comment