Solution:
1) A=70054′=70.90;
B=7906′=79.10;
a=20m. Let's find angle C:
C=180−79.1−70.9=300;
From the sine theorem find other sides of triangle.
sinBa=sinCb;
b=asinBsinC=20×sin79.1sin30=10.18m;
c=asinBsinA=20×sin79.1sin70.9=19.25m;
2) B=36010′=36.160;
a=21m;b=30m;
sinBa=sinCb;
sinC=sinB×(ab)=2130×sin36.16=0.84;
C=arcsin(0.84)=57.140;
A=180−B−C=180−36.16−57.14=86.70;
c=bsinCsinA=30×sin57.14sin86.7=35.65m.
3) B=600; a=50m; c=60m;
sinC=basinB=6050sin60=0.72;
C=arcsin(0.72)=46.10;
A=180−60−46.10=73.9;
b=csinBsinA=60×sin60sin73.9=66.56m.
4) a=20m; b=30m; c=40m;
Let's use the cosine theorem:
a2=b2+c2−2bccosC;
cosC=2bcb2+c2−a2=2×30×40900+1600−400=0.87;
C=arccos(0.87)=29.540;
From the sine theorem:
sinA=absinC=2030×sin29.54=0.74;
A=arcsin(0.74)=47.730;
B=180−29.54−47.73=102.730.
Answer:
1) C=300; b=10.18m; c=19.25m.
2)
C=57.140; A=86.70; c=35.65m.
3)
A=73.90; C=46.10; b=66.56m.
4)
A=47.730; B=102.720; C=29.540.
Comments