We can use the Law of Cosines in the triangle ABD:
BD2=AB2+AD2−2AB⋅ADcos∠A,
BD2=52+112−2⋅5⋅11⋅cos45°=
=25+121−2⋅55⋅22=146−552,
BD=146−552.
Let's find the angle B:
∠B=180°−∠A=180°−45°=135°.
And now we can use the Law of Cosines in the triangle ABC:
AC2=AB2+BC2−2AB⋅BCcos∠A,
BD2=52+112−2⋅5⋅11⋅cos135°=
=25+121−2⋅55⋅(−22)=146+552,
AC=146+552.
Answer: 146−552, 146+552.
Comments