Question #343111

If cos(𝜃 ) = 3/5 and tan( 𝜃 ) < 0 , find the exact value of each of the remaining trigonometric functions of 𝜃


1
Expert's answer
2022-05-24T17:41:43-0400

tanθ=sinθcosθ<0\tan\theta=\frac{\sin\theta}{\cos\theta}<0 and cosθ=35>0\cos\theta=\frac 35>0 so we can conclude sinθ<0\sin\theta<0

From sin2θ+cos2θ=1\sin^2\theta+\cos^2\theta=1 we can write

sinθ=1cos2θ=19/25=4/5\sin\theta=-\sqrt{1-\cos^2\theta}=-\sqrt{1-9/25}=-4/5

tanθ=sinθcosθ=35:(45)=34\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac35:(-\frac45)=-\frac34

cotθ=1tanθ=43\cot\theta=\frac{1}{\tan\theta}=-\frac43

secθ=1cosθ=53\sec\theta=\frac{1}{\cos\theta}=\frac53

cscθ=1sinθ=54\csc\theta=\frac{1}{\sin\theta}=-\frac54


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS