tan θ = sin θ cos θ < 0 \tan\theta=\frac{\sin\theta}{\cos\theta}<0 tan θ = c o s θ s i n θ < 0 and cos θ = 3 5 > 0 \cos\theta=\frac 35>0 cos θ = 5 3 > 0 so we can conclude sin θ < 0 \sin\theta<0 sin θ < 0
From sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 sin 2 θ + cos 2 θ = 1 we can write
sin θ = − 1 − cos 2 θ = − 1 − 9 / 25 = − 4 / 5 \sin\theta=-\sqrt{1-\cos^2\theta}=-\sqrt{1-9/25}=-4/5 sin θ = − 1 − cos 2 θ = − 1 − 9/25 = − 4/5
tan θ = sin θ cos θ = 3 5 : ( − 4 5 ) = − 3 4 \tan\theta=\frac{\sin\theta}{\cos\theta}=\frac35:(-\frac45)=-\frac34 tan θ = c o s θ s i n θ = 5 3 : ( − 5 4 ) = − 4 3
cot θ = 1 tan θ = − 4 3 \cot\theta=\frac{1}{\tan\theta}=-\frac43 cot θ = t a n θ 1 = − 3 4
sec θ = 1 cos θ = 5 3 \sec\theta=\frac{1}{\cos\theta}=\frac53 sec θ = c o s θ 1 = 3 5
csc θ = 1 sin θ = − 5 4 \csc\theta=\frac{1}{\sin\theta}=-\frac54 csc θ = s i n θ 1 = − 4 5
Comments