Suppose explorer start from origin A A A to north 22 K m 22Km 22 K m to a point B B B .
Then Move 45 ° 45\degree 45° South East 47 K m 47Km 47 K m to reach a point C C C .
Join point A C , AC, A C , Length of A C AC A C would be displacement from origin
Now draw a line D C DC D C from point C C C that meet line A B AB A B on point D D D
△ A B C \triangle ABC △ A BC Given
∠ B = 45 ° \angle B= 45 \degree ∠ B = 45° A B = 22 K m AB=22Km A B = 22 K m
B C = 47 K m BC=47 Km BC = 47 K m
D i s p l a c e m e n t = A C = ? Displacement =AC=? D i s pl a ce m e n t = A C = ?
From △ D B C \triangle DBC △ D BC
S i n B = D C B C SinB=\frac{DC}{BC} S in B = BC D C
S i n 45 ° = D C 47 Sin45 \degree=\frac{DC}{47} S in 45° = 47 D C
D C = B C S i n 45 ° = 47 S i n 45 ° DC={BC}{Sin45 \degree}=47Sin45 \degree D C = BC S in 45° = 47 S in 45°
D C = 33.2340 K m DC=33.2340Km D C = 33.2340 K m
△ D B C \triangle DBC △ D BC
T a n B = D C B D TanB=\frac{DC}{BD} T an B = B D D C
T a n 45 ° = D C B D Tan45 \degree=\frac{DC}{BD} T an 45° = B D D C
B D = D C = 33.23 K m BD=DC=33.23Km B D = D C = 33.23 K m
A D = B D − A B = 33.23 − 22 AD=BD-AB=33.23-22 A D = B D − A B = 33.23 − 22
A D = 11.23 K m AD=11.23Km A D = 11.23 K m
△ A D C \triangle ADC △ A D C
A C 2 = D C 2 + A D 2 {AC}^2={DC}^2 +{AD}^2 A C 2 = D C 2 + A D 2
A C 2 = 33.23 2 + 11.23 2 {AC}^2={33.23}^2 +{11.23}^2 A C 2 = 33.23 2 + 11.23 2
A C 2 = 1230.3458 {AC}^2=1230.3458 A C 2 = 1230.3458
A C = 1230.3458 AC=\sqrt{1230.3458} A C = 1230.3458
A C = 35.0049 K m AC=35.0049 Km A C = 35.0049 K m
D i s p l a c e m e n t A C = 35.00 K m Displacement\boxed {AC=35.00 Km} D i s pl a ce m e n t A C = 35.00 K m
Comments