The function π(π₯) is defined as π(π₯)=π+πcosπ₯, where π and π are constants. The range of π(π₯) is given by β6β€π(π₯)β€2.
a. Find the values of π and π
b. Solve the equation π(π₯)=0 for 0Β°β€π₯β€360Β°
c. Sketch the graph of π¦=π(π₯) for 0Β°β€π₯β€360Β°
a)
Because the min value of the function = -6: "a+bcosx =-6"
max value = 2: "a+bcosx = 2"
Because "-1\u2264cosx\u22641" it means "min(cosx)=-1, max(cosx)=1"
Make up a system:"\\begin{cases}\n a+b(-1)=-6 \\\\a+b*1=2\n \n\\end{cases}" "\\implies" "\\begin{cases}\n a-b=-6 \\\\\n a+b=2\n\\end{cases}" "\\implies" "\\begin{cases}\n 2a=-4 \\\\\n a+b = 2\n\\end{cases}" "\\implies\\begin{cases}\n a =-2 \\\\\n b=4\n\\end{cases}"
Answer:"f(x)=-2+4cosx"
b)
"-2+4cosx=0, x\\isin[0;2\\pi]"
"4cosx=2\\implies cosx=\\frac24 \\implies cosx = \\frac 12"
"x=\\begin{smallmatrix}+\\\\-\n\\end{smallmatrix}" "\\frac\\pi3+2\\pi n, n\\isin Z, Z =" set of integer
for "n=0:" "x =\\frac\\pi3" and "x=-\\frac\\pi3" - not suitable
for "n =1:x=\\frac\\pi3+2\\pi" - not suitable, and "x=-\\frac\\pi3 +2\\pi = \\frac{5\\pi}3"
for "n=-1: x= \\frac\\pi3-2\\pi" - not suitable, and "x=-\\frac\\pi3-2\\pi" - not suitable
Answer: "x=\\frac\\pi3, x=\\frac{5\\pi}3"
c)
The required plot of the graph between the blue and green line in the screenshot
Comments
Leave a comment