Solve the equation √3sin𝜃−cos𝜃=0 for −180°≤𝑥≤180°
3sinθ=cosθ;sinθcosθ=13;tanθ=13;θ=arctan13+180°⋅n=30°+180°⋅n, n∈Z;\sqrt{3} \sin\theta=\cos \theta;\\ \cfrac{\sin\theta}{\cos\theta}=\cfrac{1}{\sqrt3};\\ \tan\theta=\cfrac{1}{\sqrt3};\\ \theta=\arctan\cfrac{1}{\sqrt3}+180\degree\cdot n=30\degree+180\degree\cdot n, \ \ n\in Z;\\3sinθ=cosθ;cosθsinθ=31;tanθ=31;θ=arctan31+180°⋅n=30°+180°⋅n, n∈Z;
for −180°≤θ≤180° n=0-180\degree\leq\theta\leq180\degree\ \ n=0−180°≤θ≤180° n=0 or n=−1;n=-1;n=−1;
θ1=−150°, θ2=30°.\theta_1=-150\degree,\ \ \theta_2=30\degree.θ1=−150°, θ2=30°.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments