(a) Let θ= the angle of elevation to the top of a building from point A.
Consider right triangle BAC
tanθ=adjacentopposite=ACBC=113m56m
θ=tan−111356≈26.36° Let α= the angle of depression from the top of the building to A.
Then α=θ=26.36°.
(b)
6x2+x+7=6x2−6xm+6xm+x
−(6m+1)(m)+(6m+1)(m)+7
=6x(x−m)+(6m+1)(x−m)
+6m2+m+7
6x2+x+7=6x2+12xm−12xm+x
−(12m−1)(2m)+(12m−1)(2m)+7
=6x(x+2m)−(12m−1)(x+2m)
+24m2−2m+7 The remainder is the same
6m2+m+7=24m2−2m+7
18m2−3m=0
3m(6m−1)=0
m1=0,m2=61
Comments
Leave a comment