Problem C
Determine the numerical value of the following expression without the use of a calculator:
problem is found on the website below
https://docs.google.com/viewerng/viewer?url=https://iymc.info/docs/IYMC_Qualification_Round_2021.pdf
sin(π+log2(2π⋅2π)25−24−23)⋅24−123/23+log2(log3(915)+π1+(−1)17+1)+(−1)5+(−1)27(−1)766==sin(π+log2(22π)32−16−8)⋅2323/23+log2(log3(330)+π1−1+1)+−1−11==sin(π+log2(2π)8)⋅23/23+log2(30+1+1)−2==sin(π+π8)⋅2+log2(32)−2=sin(π4)⋅2+log2(25)−2==22⋅2+5−2=1+3=4=2.\sqrt{\sin\left(\frac{\pi+\log_2(\sqrt{2^\pi\cdot2^\pi})}{2^5-2^4-2^3}\right)\cdot\sqrt[3]{\frac{2^{4-1}}{2^{3/2}}}+\log_2(\log_3(9^{15})+\pi^{1+(-1)^{17}}+1)+\frac{(-1)^5+(-1)^{27}}{(-1)^{766}}}=\\ {}=\sqrt{\sin\left(\frac{\pi+\log_2(\sqrt{2^{2\pi}})}{32-16-8}\right)\cdot\sqrt[3]{\frac{2^{3}}{2^{3/2}}}+\log_2(\log_3(3^{30})+\pi^{1-1}+1)+\frac{-1-1}{1}}=\\ {}=\sqrt{\sin\left(\frac{\pi+\log_2(2^{\pi})}{8}\right)\cdot\sqrt[3]{2^{3/2}}+\log_2(30+1+1)-2}=\\ {}=\sqrt{\sin\left(\frac{\pi+\pi}{8}\right)\cdot\sqrt{2}+\log_2(32)-2}=\sqrt{\sin\left(\frac{\pi}{4}\right)\cdot\sqrt{2}+\log_2(2^5)-2}=\\ {}=\sqrt{\frac{\sqrt2}2\cdot\sqrt{2}+5-2}=\sqrt{1+3}=\sqrt4=2.sin(25−24−23π+log2(2π⋅2π))⋅323/224−1+log2(log3(915)+π1+(−1)17+1)+(−1)766(−1)5+(−1)27==sin(32−16−8π+log2(22π))⋅323/223+log2(log3(330)+π1−1+1)+1−1−1==sin(8π+log2(2π))⋅323/2+log2(30+1+1)−2==sin(8π+π)⋅2+log2(32)−2=sin(4π)⋅2+log2(25)−2==22⋅2+5−2=1+3=4=2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments