Question #225116

Problem C

Determine the numerical value of the following expression without the use of a calculator: 

problem is found on the website below


https://docs.google.com/viewerng/viewer?url=https://iymc.info/docs/IYMC_Qualification_Round_2021.pdf


1
Expert's answer
2021-08-23T07:30:20-0400

sin(π+log2(2π2π)252423)24123/23+log2(log3(915)+π1+(1)17+1)+(1)5+(1)27(1)766==sin(π+log2(22π)32168)2323/23+log2(log3(330)+π11+1)+111==sin(π+log2(2π)8)23/23+log2(30+1+1)2==sin(π+π8)2+log2(32)2=sin(π4)2+log2(25)2==222+52=1+3=4=2.\sqrt{\sin\left(\frac{\pi+\log_2(\sqrt{2^\pi\cdot2^\pi})}{2^5-2^4-2^3}\right)\cdot\sqrt[3]{\frac{2^{4-1}}{2^{3/2}}}+\log_2(\log_3(9^{15})+\pi^{1+(-1)^{17}}+1)+\frac{(-1)^5+(-1)^{27}}{(-1)^{766}}}=\\ {}=\sqrt{\sin\left(\frac{\pi+\log_2(\sqrt{2^{2\pi}})}{32-16-8}\right)\cdot\sqrt[3]{\frac{2^{3}}{2^{3/2}}}+\log_2(\log_3(3^{30})+\pi^{1-1}+1)+\frac{-1-1}{1}}=\\ {}=\sqrt{\sin\left(\frac{\pi+\log_2(2^{\pi})}{8}\right)\cdot\sqrt[3]{2^{3/2}}+\log_2(30+1+1)-2}=\\ {}=\sqrt{\sin\left(\frac{\pi+\pi}{8}\right)\cdot\sqrt{2}+\log_2(32)-2}=\sqrt{\sin\left(\frac{\pi}{4}\right)\cdot\sqrt{2}+\log_2(2^5)-2}=\\ {}=\sqrt{\frac{\sqrt2}2\cdot\sqrt{2}+5-2}=\sqrt{1+3}=\sqrt4=2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS