Question #212421
  1. Determine the general solution of the equation: 4sin2 x - 3 = 0
1
Expert's answer
2021-07-04T15:48:36-0400

4sin2x3=04sin2x=3sin2x=34sinx=±34sinx=±32x=sin1(32)x=60°,120°x=sin1(32)x=300°,240°4\sin^2x-3=0\\ 4\sin^2x=3\\ \sin^2x=\frac{3}{4}\\ \sin{x}=\pm{\sqrt{\frac{3}{4}}}\\ \sin{x}=\pm\frac{\sqrt{3}}{2}\\ x=\sin^{-1}{(\frac{\sqrt{3}}{2})}\\ x=60\degree, 120\degree\\ x=\sin^{-1}{(-\frac{\sqrt{3}}{2})}\\ x=300\degree, 240\degree\\

General solution is

x=360°(n)+60°,360°(n)+120°,360°(n)+240°,360°(n)+300°x=360\degree(n)+60\degree, 360\degree(n) +120\degree, 360\degree(n)+240\degree, 360\degree(n)+300\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS