Find sin18°.
Let x=18°x=18\degreex=18°
Then:
2x=90°−3x2x=90\degree-3x2x=90°−3x
sin2x=sin(90°−3x)=cos3xsin2x=sin(90\degree-3x)=cos3xsin2x=sin(90°−3x)=cos3x
2sinxcosx=4cos3x−3cosx2sinxcosx=4cos^3x-3cosx2sinxcosx=4cos3x−3cosx
4cos2x−2sinx−3=04cos^2x-2sinx-3=04cos2x−2sinx−3=0
4(1−sin2x)−2sinx−3=04(1-sin^2x)-2sinx-3=04(1−sin2x)−2sinx−3=0
4sin2x+2sinx−1=04sin^2x+2sinx-1=04sin2x+2sinx−1=0
sinx=sin18°=−2+208=−1+54sinx=sin18\degree=\frac{-2+\sqrt{20}}{8}=\frac{-1+\sqrt{5}}{4}sinx=sin18°=8−2+20=4−1+5
sin18°=0.3090sin18\degree=0.3090sin18°=0.3090
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Dear Deniss, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Wow!
Comments
Dear Deniss, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Wow!