Question #157512
Given that sinu + sinq - (27/65) and tan[(u + q)/ 2] = (3/7), find cos[(u - q)/ 2]
1
Expert's answer
2021-02-16T07:56:37-0500

Solution


sinu+sinq=27652sin(u+q2).cos(uq2)=2765........................(1)sin(u+q)=2sin(u+q2).cos(u+q2).........................(2)sin(u+q)=2tan(u+q2)1tan2(u+q2)=2×371949=2120.................................(3)(2)=(3)2sin(u+q2).cos(u+q2)=2120...............................(4)tan(u+q2)=37sin(u+q2)cos(u+q2)=37    cos(u+q2)=73sin(u+q2)............(5)Substituting(5)in(4),2sin(u+q2).73.sin(u+q2)=2120sin2(u+q2)=940sin(u+q2)=±3210=+0.474or0.474Accordingto(1),Whensin(u+q2)=+0.474    cos(uq2)=+0.438Whensin(u+q2)=0.474    cos(uq2)=0.438\qquad\qquad \begin{aligned} \sin u+\sin q&= \frac{27}{65}\\ 2\sin (\frac{u+q}{2}).\cos(\frac{u-q}{2})&= \small \frac{27}{65}........................(1)\\ \\ \sin(u+q)&=2\sin (\frac{u+q}{2}).\cos(\frac{u+q}{2}).........................(2)\\ \\ \sin(u+q)&= \frac{2\tan(\frac{u+q}{2})}{1-\tan^2(\frac{u+q}{2})}\\ &= \frac{2\times\frac{3}{7}}{1-\frac{9}{49}}\\ &= \frac{21}{20}.................................(3)\\ \\ (2)=(3)\\ \\ 2\sin(\frac{u+q}{2}).\cos(\frac{u+q}{2})&= \frac{21}{20}...............................(4)\\ \\ \tan(\frac{u+q}{2})&= \frac{3}{7}\\ \frac{\sin(\frac{u+q}{2})}{\cos(\frac{u+q}{2})}&= \frac{3}{7}\implies \cos(\frac{u+q}{2})=\frac{7}{3}\sin(\frac{u+q}{2})............(5)\\ \\ Substituting \,(5)\,in\,(4), \\ 2\sin(\frac{u+q}{2}).\frac{7}{3}.\sin(\frac{u+q}{2})&=\frac{21}{20}\\ \sin^2(\frac{u+q}{2})&=\frac{9}{40}\\ \sin(\frac{u+q}{2})&=\pm\frac{3}{2\sqrt{10}}\\ &=+0.474\,or\,-0.474\\ \\ According\,to\,(1),\\ When\,\,\,\sin(\frac{u+q}{2})=+0.474&\implies\cos(\frac{u-q}{2})=+0.438\\ When\,\,\,\sin(\frac{u+q}{2})=-0.474 &\implies\cos(\frac{u-q}{2})=-0.438 \end{aligned}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS