Find side a in ∆ABC, side b = 12 m, side c = 20 m and angle B = 45˚.
We know that cosine law states that,
a=b2+c2−2bccosθa=\sqrt{b^2+c^2-2bc\cos\theta}a=b2+c2−2bccosθ
and we have,
b=12mb=12mb=12m
c=20mc=20mc=20m
θ=45°\theta=45\degreeθ=45°
a=122+202−2×12×20×cos45°a=\sqrt{12^2+20^2-2\times 12 \times 20 \times \cos45\degree}a=122+202−2×12×20×cos45°
a=144+400−480×22a=\sqrt{144+400-480 \times \frac{\sqrt2}{2}}a=144+400−480×22
a=544−2402a=\sqrt{544 - 240\sqrt2}a=544−2402
a≈14.3a\approx 14.3a≈14.3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments