Question #149313
Find the volume and lateral surface area of the frustum of a regular square pyramid whose altitude is 38 cm and whose base edges are 10 cm and 20 cm respectively.

FINAL ANSWERS: _____________________ ______________________
1
Expert's answer
2020-12-07T20:27:39-0500

V=13h(S1+S1S2+S2)V = \frac {1}{3}h(S_1+\sqrt{S_1S_2}+S_2)

where h is the height of the pyramid;S1,S2the area of the bases\text{where h is the height of the pyramid;} S_1,S_2\text{the area of the bases}

since a regular square pyramid:\text{since a regular square pyramid:}

S1=1010=100S_1 = 10*10 =100

S2=2020=400S_2 = 20*20=400

V=1338(100+100400+400)8867 cm3V = \frac {1}{3}*38*(100+\sqrt{100*400}+400) \approx8867\ cm^3

Ssur=12(p1+p2)fS_{sur}= \frac{1}{2}(p_1+p_2)*f

where p1,p2 the perimeters of the bases f apothem\text{where } p_1,p_2 \text{ the perimeters of the bases } f \text{ apothem}

p1=104=40p_1 = 10 *4 =40

p2=204=80p_2 = 20*4=80

f=h2+[ba2]2f = \sqrt{h^2+{[\frac{b-a}{2}]}^2}

where h is the height of the pyramid\text{where }h \text{ is the height of the pyramid}

a,b base side lengtha,b \text{ base side length}

f=382+[20102]238.33f = \sqrt{38^2+{[\frac{20-10}{2}]}^2}\approx38.33

Ssur=12(40+80)38.332299.8 cm2S_{sur}= \frac{1}{2}(40+80)*38.33\approx2299.8\ cm^2


Aswer: V8867 cm3V \approx8867\ cm^3 Ssur2299.8 cm2S_{sur}\approx2299.8\ cm^2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS