Question #149135

1+4x2=4x.secA1+4x^2 = 4x.secA

Sec6A - tan6A =?

1
Expert's answer
2020-12-08T16:58:18-0500

Given,


1+4x2=4xsecA1+4x^2=4xsecA , so write secAsecA in terms of xx as secA=1+4x24xsecA=\frac{1+4x^2}{4x}




Use trigonometry to find pp in terms of xx as,


p=(1+4x2)2(4x)2p=\sqrt{(1+4x^2)^2-(4x)^2}


=1+16x4+8x216x2=\sqrt{1+16x^4+8x^2-16x^2}


=1+16x48x2=\sqrt{1+16x^4-8x^2}


=12+(4x2)22(1)(4x2)=\sqrt{1^2+(4x^2)^2-2(1)(4x^2)}


=(14x2)2=\sqrt{(1-4x^2)^2}


=14x2=1-4x^2


So, tanA=14x24xtanA=\frac{1-4x^2}{4x}


Now, simplify the expression sec6Atan6Asec^6A-tan^6A as,


sec6Atan6A=(sec2A)3(tan2A)3sec^6A-tan^6A=(sec^2A)^3-(tan^2A)^3


Use formula a3b3=(ab)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2) to obtain,


sec6Atan6A=(sec2Atan2A)(sec4A+sec2Atan2A+tan4A)sec^6A-tan^6A=(sec^2A-tan^2A)(sec^4A+sec^2Atan^2A+tan^4A)


=(1)(sec4A+sec2Atan2A+tan4A)=(1)(sec^4A+sec^2Atan^2A+tan^4A)


=sec4A+sec2Atan2A+tan4A=sec^4A+sec^2Atan^2A+tan^4A


=sec4A+sec2Atan2A+(sec2A1)2=sec^4A+sec^2Atan^2A+(sec^2A-1)^2


=sec4A+sec2Atan2A+sec4A2sec2A+1=sec^4A+sec^2Atan^2A+sec^4A-2sec^2A+1


=2sec4A+sec2Atan2A2sec2A+1=2sec^4A+sec^2Atan^2A-2sec^2A+1


=2sec2A(sec2A1)+sec2Atan2A+1=2sec^2A(sec^2A-1)+sec^2Atan^2A+1


=2sec2Atan2A+sec2Atan2A+1=2sec^2Atan^2A+sec^2Atan^2A+1


=3sec2Atan2A+1=3sec^2Atan^2A+1


Substitute secA=1+4x24xsecA=\frac{1+4x^2}{4x} and tanA=14x24xtanA=\frac{1-4x^2}{4x} into simplified expression to obtain,


=3(1+4x24x)2(14x24x)2+1=3(\frac{1+4x^2}{4x})^2(\frac{1-4x^2}{4x})^2+1


=3[(1+4x24x)(14x24x)]2+1=3[(\frac{1+4x^2}{4x})(\frac{1-4x^2}{4x})]^2+1


=3[(1+4x2)(14x2)16x2]2+1=3[\frac{(1+4x^2)(1-4x^2)}{16x^2}]^2+1


=3[116x416x2]2+1=3[\frac{1-16x^4}{16x^2}]^2+1


=3(1+256x832x4256x4)+1=3(\frac{1+256x^8-32x^4}{256x^4})+1


=3+768x896x4+256x4256x4=\frac{3+768x^8-96x^4+256x^4}{256x^4}


=768x8+160x4+3256x4=\frac{768x^8+160x^4+3}{256x^4}


Therefore, the simplified expression in terms of xx is sec6Atan6A==768x8+160x4+3256x4sec^6A-tan^6A==\frac{768x^8+160x^4+3}{256x^4}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS