Given,
1+4x2=4xsecA , so write secA in terms of x as secA=4x1+4x2
Use trigonometry to find p in terms of x as,
p=(1+4x2)2−(4x)2
=1+16x4+8x2−16x2
=1+16x4−8x2
=12+(4x2)2−2(1)(4x2)
=(1−4x2)2
=1−4x2
So, tanA=4x1−4x2
Now, simplify the expression sec6A−tan6A as,
sec6A−tan6A=(sec2A)3−(tan2A)3
Use formula a3−b3=(a−b)(a2+ab+b2) to obtain,
sec6A−tan6A=(sec2A−tan2A)(sec4A+sec2Atan2A+tan4A)
=(1)(sec4A+sec2Atan2A+tan4A)
=sec4A+sec2Atan2A+tan4A
=sec4A+sec2Atan2A+(sec2A−1)2
=sec4A+sec2Atan2A+sec4A−2sec2A+1
=2sec4A+sec2Atan2A−2sec2A+1
=2sec2A(sec2A−1)+sec2Atan2A+1
=2sec2Atan2A+sec2Atan2A+1
=3sec2Atan2A+1
Substitute secA=4x1+4x2 and tanA=4x1−4x2 into simplified expression to obtain,
=3(4x1+4x2)2(4x1−4x2)2+1
=3[(4x1+4x2)(4x1−4x2)]2+1
=3[16x2(1+4x2)(1−4x2)]2+1
=3[16x21−16x4]2+1
=3(256x41+256x8−32x4)+1
=256x43+768x8−96x4+256x4
=256x4768x8+160x4+3
Therefore, the simplified expression in terms of x is sec6A−tan6A==256x4768x8+160x4+3
Comments