"1+4x^2 = 4x.secA"
Given,
"1+4x^2=4xsecA" , so write "secA" in terms of "x" as "secA=\\frac{1+4x^2}{4x}"
Use trigonometry to find "p" in terms of "x" as,
"p=\\sqrt{(1+4x^2)^2-(4x)^2}"
"=\\sqrt{1+16x^4+8x^2-16x^2}"
"=\\sqrt{1+16x^4-8x^2}"
"=\\sqrt{1^2+(4x^2)^2-2(1)(4x^2)}"
"=\\sqrt{(1-4x^2)^2}"
"=1-4x^2"
So, "tanA=\\frac{1-4x^2}{4x}"
Now, simplify the expression "sec^6A-tan^6A" as,
"sec^6A-tan^6A=(sec^2A)^3-(tan^2A)^3"
Use formula "a^3-b^3=(a-b)(a^2+ab+b^2)" to obtain,
"sec^6A-tan^6A=(sec^2A-tan^2A)(sec^4A+sec^2Atan^2A+tan^4A)"
"=(1)(sec^4A+sec^2Atan^2A+tan^4A)"
"=sec^4A+sec^2Atan^2A+tan^4A"
"=sec^4A+sec^2Atan^2A+(sec^2A-1)^2"
"=sec^4A+sec^2Atan^2A+sec^4A-2sec^2A+1"
"=2sec^4A+sec^2Atan^2A-2sec^2A+1"
"=2sec^2A(sec^2A-1)+sec^2Atan^2A+1"
"=2sec^2Atan^2A+sec^2Atan^2A+1"
"=3sec^2Atan^2A+1"
Substitute "secA=\\frac{1+4x^2}{4x}" and "tanA=\\frac{1-4x^2}{4x}" into simplified expression to obtain,
"=3(\\frac{1+4x^2}{4x})^2(\\frac{1-4x^2}{4x})^2+1"
"=3[(\\frac{1+4x^2}{4x})(\\frac{1-4x^2}{4x})]^2+1"
"=3[\\frac{(1+4x^2)(1-4x^2)}{16x^2}]^2+1"
"=3[\\frac{1-16x^4}{16x^2}]^2+1"
"=3(\\frac{1+256x^8-32x^4}{256x^4})+1"
"=\\frac{3+768x^8-96x^4+256x^4}{256x^4}"
"=\\frac{768x^8+160x^4+3}{256x^4}"
Therefore, the simplified expression in terms of "x" is "sec^6A-tan^6A==\\frac{768x^8+160x^4+3}{256x^4}"
Comments
Leave a comment