Given,
1 + 4 x 2 = 4 x s e c A 1+4x^2=4xsecA 1 + 4 x 2 = 4 x sec A , so write s e c A secA sec A in terms of x x x as s e c A = 1 + 4 x 2 4 x secA=\frac{1+4x^2}{4x} sec A = 4 x 1 + 4 x 2
Use trigonometry to find p p p in terms of x x x as,
p = ( 1 + 4 x 2 ) 2 − ( 4 x ) 2 p=\sqrt{(1+4x^2)^2-(4x)^2} p = ( 1 + 4 x 2 ) 2 − ( 4 x ) 2
= 1 + 16 x 4 + 8 x 2 − 16 x 2 =\sqrt{1+16x^4+8x^2-16x^2} = 1 + 16 x 4 + 8 x 2 − 16 x 2
= 1 + 16 x 4 − 8 x 2 =\sqrt{1+16x^4-8x^2} = 1 + 16 x 4 − 8 x 2
= 1 2 + ( 4 x 2 ) 2 − 2 ( 1 ) ( 4 x 2 ) =\sqrt{1^2+(4x^2)^2-2(1)(4x^2)} = 1 2 + ( 4 x 2 ) 2 − 2 ( 1 ) ( 4 x 2 )
= ( 1 − 4 x 2 ) 2 =\sqrt{(1-4x^2)^2} = ( 1 − 4 x 2 ) 2
= 1 − 4 x 2 =1-4x^2 = 1 − 4 x 2
So, t a n A = 1 − 4 x 2 4 x tanA=\frac{1-4x^2}{4x} t an A = 4 x 1 − 4 x 2
Now, simplify the expression s e c 6 A − t a n 6 A sec^6A-tan^6A se c 6 A − t a n 6 A as,
s e c 6 A − t a n 6 A = ( s e c 2 A ) 3 − ( t a n 2 A ) 3 sec^6A-tan^6A=(sec^2A)^3-(tan^2A)^3 se c 6 A − t a n 6 A = ( se c 2 A ) 3 − ( t a n 2 A ) 3
Use formula a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a 3 − b 3 = ( a − b ) ( a 2 + ab + b 2 ) to obtain,
s e c 6 A − t a n 6 A = ( s e c 2 A − t a n 2 A ) ( s e c 4 A + s e c 2 A t a n 2 A + t a n 4 A ) sec^6A-tan^6A=(sec^2A-tan^2A)(sec^4A+sec^2Atan^2A+tan^4A) se c 6 A − t a n 6 A = ( se c 2 A − t a n 2 A ) ( se c 4 A + se c 2 A t a n 2 A + t a n 4 A )
= ( 1 ) ( s e c 4 A + s e c 2 A t a n 2 A + t a n 4 A ) =(1)(sec^4A+sec^2Atan^2A+tan^4A) = ( 1 ) ( se c 4 A + se c 2 A t a n 2 A + t a n 4 A )
= s e c 4 A + s e c 2 A t a n 2 A + t a n 4 A =sec^4A+sec^2Atan^2A+tan^4A = se c 4 A + se c 2 A t a n 2 A + t a n 4 A
= s e c 4 A + s e c 2 A t a n 2 A + ( s e c 2 A − 1 ) 2 =sec^4A+sec^2Atan^2A+(sec^2A-1)^2 = se c 4 A + se c 2 A t a n 2 A + ( se c 2 A − 1 ) 2
= s e c 4 A + s e c 2 A t a n 2 A + s e c 4 A − 2 s e c 2 A + 1 =sec^4A+sec^2Atan^2A+sec^4A-2sec^2A+1 = se c 4 A + se c 2 A t a n 2 A + se c 4 A − 2 se c 2 A + 1
= 2 s e c 4 A + s e c 2 A t a n 2 A − 2 s e c 2 A + 1 =2sec^4A+sec^2Atan^2A-2sec^2A+1 = 2 se c 4 A + se c 2 A t a n 2 A − 2 se c 2 A + 1
= 2 s e c 2 A ( s e c 2 A − 1 ) + s e c 2 A t a n 2 A + 1 =2sec^2A(sec^2A-1)+sec^2Atan^2A+1 = 2 se c 2 A ( se c 2 A − 1 ) + se c 2 A t a n 2 A + 1
= 2 s e c 2 A t a n 2 A + s e c 2 A t a n 2 A + 1 =2sec^2Atan^2A+sec^2Atan^2A+1 = 2 se c 2 A t a n 2 A + se c 2 A t a n 2 A + 1
= 3 s e c 2 A t a n 2 A + 1 =3sec^2Atan^2A+1 = 3 se c 2 A t a n 2 A + 1
Substitute s e c A = 1 + 4 x 2 4 x secA=\frac{1+4x^2}{4x} sec A = 4 x 1 + 4 x 2 and t a n A = 1 − 4 x 2 4 x tanA=\frac{1-4x^2}{4x} t an A = 4 x 1 − 4 x 2 into simplified expression to obtain,
= 3 ( 1 + 4 x 2 4 x ) 2 ( 1 − 4 x 2 4 x ) 2 + 1 =3(\frac{1+4x^2}{4x})^2(\frac{1-4x^2}{4x})^2+1 = 3 ( 4 x 1 + 4 x 2 ) 2 ( 4 x 1 − 4 x 2 ) 2 + 1
= 3 [ ( 1 + 4 x 2 4 x ) ( 1 − 4 x 2 4 x ) ] 2 + 1 =3[(\frac{1+4x^2}{4x})(\frac{1-4x^2}{4x})]^2+1 = 3 [( 4 x 1 + 4 x 2 ) ( 4 x 1 − 4 x 2 ) ] 2 + 1
= 3 [ ( 1 + 4 x 2 ) ( 1 − 4 x 2 ) 16 x 2 ] 2 + 1 =3[\frac{(1+4x^2)(1-4x^2)}{16x^2}]^2+1 = 3 [ 16 x 2 ( 1 + 4 x 2 ) ( 1 − 4 x 2 ) ] 2 + 1
= 3 [ 1 − 16 x 4 16 x 2 ] 2 + 1 =3[\frac{1-16x^4}{16x^2}]^2+1 = 3 [ 16 x 2 1 − 16 x 4 ] 2 + 1
= 3 ( 1 + 256 x 8 − 32 x 4 256 x 4 ) + 1 =3(\frac{1+256x^8-32x^4}{256x^4})+1 = 3 ( 256 x 4 1 + 256 x 8 − 32 x 4 ) + 1
= 3 + 768 x 8 − 96 x 4 + 256 x 4 256 x 4 =\frac{3+768x^8-96x^4+256x^4}{256x^4} = 256 x 4 3 + 768 x 8 − 96 x 4 + 256 x 4
= 768 x 8 + 160 x 4 + 3 256 x 4 =\frac{768x^8+160x^4+3}{256x^4} = 256 x 4 768 x 8 + 160 x 4 + 3
Therefore, the simplified expression in terms of x x x is s e c 6 A − t a n 6 A = = 768 x 8 + 160 x 4 + 3 256 x 4 sec^6A-tan^6A==\frac{768x^8+160x^4+3}{256x^4} se c 6 A − t a n 6 A == 256 x 4 768 x 8 + 160 x 4 + 3
Comments