Question #148497
3cos(x-30)=cos0
1
Expert's answer
2020-12-07T09:14:49-0500

3cos(x30°)=cos0°3cos(x30°)=1cos(x30°)=13cos(π6x)=13π6x=arccos(13)+2πn1,n1Z π6x=arccos(13)+2πn2,n2Zx=arccos(13)π6+2πn1,n1Z x=arccos(13)π6+2πn2,n2Zx=π6arccos132πn1,n1Z x=π6+arccos132πn2,n2ZAnswer:x=π6arccos132πn1,n1Z x=π6+arccos132πn2,n2Z3 \cdot \cos (x-30\degree) = \cos 0\degree \\ 3 \cdot \cos (x-30\degree) = 1\\ \cos (x-30\degree) = \frac{1}{3} \\ \cos (\frac{\pi}{6}-x) = \frac{1}{3} \\ \frac{\pi}{6}-x=\arccos(\frac{1}{3})+2\pi n_1, n_1\in Z\ \\ \frac{\pi}{6}-x=-\arccos(\frac{1}{3})+2\pi n_2, n_2\in Z \\ -x=\arccos(\frac{1}{3})-\frac{\pi}{6}+2\pi n_1, n_1\in Z\ \\ -x=-\arccos(\frac{1}{3})-\frac{\pi}{6}+2\pi n_2, n_2\in Z \\ x=\frac{\pi}{6}-\arccos\frac{1}{3}-2\pi n_1, n_1\in Z\ \\ x=\frac{\pi}{6}+\arccos\frac{1}{3}-2\pi n_2, n_2\in Z \\ Answer:\\ x=\frac{\pi}{6}-\arccos\frac{1}{3}-2\pi n_1, n_1\in Z\ \\ x=\frac{\pi}{6}+\arccos\frac{1}{3}-2\pi n_2, n_2\in Z


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS