1.Given ∠ B \angle B ∠ B , side c c c
Find : a − ? b − ? ∠ A − ? a-? b-? \angle A-? a − ? b − ? ∠ A − ?
Solution :
Find the side a a a :
c o s ∠ B = a c cos \angle B=\frac{a}{c} cos ∠ B = c a
a = c ⋅ c o s ∠ B a=c⋅cos\angle B a = c ⋅ cos ∠ B
Find the side b b b :
a 2 + b 2 = c 2 a^2+b^2=c^2 a 2 + b 2 = c 2
c 2 ⋅ c o s 2 ∠ B + b 2 = c 2 c^2⋅cos^2\angle B +b^2=c^2 c 2 ⋅ co s 2 ∠ B + b 2 = c 2
b 2 = c 2 − c 2 ⋅ c o s 2 ∠ B b^2=c^2-c^2⋅cos^2\angle B b 2 = c 2 − c 2 ⋅ co s 2 ∠ B
b 2 = c 2 ⋅ ( 1 − c o s 2 ∠ B ) b^2=c^2⋅(1-cos^2\angle B) b 2 = c 2 ⋅ ( 1 − co s 2 ∠ B )
b = c 1 − c o s 2 ∠ B b=c\sqrt{\smash[b]{1-cos^2\angle B}} b = c 1 − co s 2 ∠ B
Find ∠ A \angle A ∠ A :
∠ A = 180 ° − ∠ C − ∠ B = 180 ° − 90 ° − ∠ B = \angle A=180\degree-\angle C-\angle B=180\degree-90\degree-\angle B= ∠ A = 180° − ∠ C − ∠ B = 180° − 90° − ∠ B =
= 90 ° − ∠ B =90\degree-\angle B = 90° − ∠ B
2.Given ∠ A \angle A ∠ A , side b b b
Find : a − ? a-? a − ? c − ? c-? c − ? ∠ B − ? \angle B-? ∠ B − ?
Solution :
Find the side c c c :
c o s ∠ A = b c cos \angle A=\frac{b}{c} cos ∠ A = c b
c ⋅ c o s ∠ A = b c⋅cos\angle A=b c ⋅ cos ∠ A = b
c = b c o s ∠ A c=\frac{b}{cos\angle A} c = cos ∠ A b
Find the side a a a :
a 2 + b 2 = c 2 a^2+b^2=c^2 a 2 + b 2 = c 2
a 2 + b 2 = b 2 c o s 2 ∠ A a^2+b^2=\frac{b^2}{cos^2\angle A} a 2 + b 2 = co s 2 ∠ A b 2
a 2 = b 2 c o s 2 ∠ A − b 2 a^2=\frac{b^2}{cos^2\angle A}-b^2 a 2 = co s 2 ∠ A b 2 − b 2
a 2 = b 2 − b 2 ⋅ c o s 2 ∠ A c o s 2 ∠ A a^2=\frac{b^2-b^2⋅cos^2\angle A}{cos^2\angle A} a 2 = co s 2 ∠ A b 2 − b 2 ⋅ co s 2 ∠ A
a 2 = b 2 c o s 2 ∠ A ⋅ ( 1 − c o s 2 ∠ A ) a^2=\frac{b^2}{cos^2\angle A}⋅(1-cos^2\angle A) a 2 = co s 2 ∠ A b 2 ⋅ ( 1 − co s 2 ∠ A )
a = b c o s ∠ A ⋅ 1 − c o s 2 ∠ A a=\frac{b}{cos\angle A}⋅\sqrt{\smash[b]{1-cos^2\angle A}} a = cos ∠ A b ⋅ 1 − co s 2 ∠ A
Find ∠ B \angle B ∠ B :
∠ B = 180 ° − ∠ A − ∠ C = 180 ∠ − ∠ A − 90 ° = \angle B=180\degree-\angle A-\angle C=180\angle-\angle A- 90\degree= ∠ B = 180° − ∠ A − ∠ C = 180∠ − ∠ A − 90° =
= 90 ° − ∠ A =90\degree-\angle A = 90° − ∠ A
3.Given ∠ A , ∠ B \angle A, \angle B ∠ A , ∠ B
Find: a − ? a-? a − ? b − ? b-? b − ? c − ? c-? c − ?
Solution:
Let side c = x c=x c = x , then find the side b b b :
c o s ∠ A = b c cos \angle A=\frac{b}{c} cos ∠ A = c b
b = c ⋅ c o s ∠ A b=c⋅cos\angle A b = c ⋅ cos ∠ A
b = x ⋅ c o s ∠ A b=x⋅cos\angle A b = x ⋅ cos ∠ A
Find the side a a a :
a 2 + b 2 = c 2 a^2+b^2=c^2 a 2 + b 2 = c 2
a 2 + x 2 ⋅ c o s 2 ∠ A = x 2 a^2+x^2⋅cos^2\angle A=x^2 a 2 + x 2 ⋅ co s 2 ∠ A = x 2
a 2 = x 2 − x 2 ⋅ c o s 2 ∠ A a^2=x^2-x^2⋅cos^2\angle A a 2 = x 2 − x 2 ⋅ co s 2 ∠ A
a 2 = x 2 ( 1 − c o s 2 ∠ A ) a^2=x^2(1-cos^2\angle A) a 2 = x 2 ( 1 − co s 2 ∠ A )
a = x ⋅ 1 − c o s 2 ∠ A a=x⋅\sqrt{\smash[b]{1-cos^2\angle A}} a = x ⋅ 1 − co s 2 ∠ A
Comments