Question #146187
Develop a formula to find the missing parts of the following triangle if the given parts are:
1. Angle B; side c
2. Angle A; side b
3. Angle B;Angle A
1
Expert's answer
2020-12-02T01:53:54-0500

1.Given B\angle B, side cc

Find: a?b?A?a-? b-? \angle A-?

Solution:

Find the side aa:

cosB=accos \angle B=\frac{a}{c}

a=ccosBa=c⋅cos\angle B

Find the side bb:

a2+b2=c2a^2+b^2=c^2

c2cos2B+b2=c2c^2⋅cos^2\angle B +b^2=c^2

b2=c2c2cos2Bb^2=c^2-c^2⋅cos^2\angle B

b2=c2(1cos2B)b^2=c^2⋅(1-cos^2\angle B)

b=c1cos2Bb=c\sqrt{\smash[b]{1-cos^2\angle B}}

Find A\angle A:

A=180°CB=180°90°B=\angle A=180\degree-\angle C-\angle B=180\degree-90\degree-\angle B=

=90°B=90\degree-\angle B

2.Given A\angle A, side bb

Find: a?a-?c?c-?B?\angle B-?

Solution:

Find the side cc:

cosA=bccos \angle A=\frac{b}{c}

ccosA=bc⋅cos\angle A=b

c=bcosAc=\frac{b}{cos\angle A}

Find the side aa:

a2+b2=c2a^2+b^2=c^2

a2+b2=b2cos2Aa^2+b^2=\frac{b^2}{cos^2\angle A}

a2=b2cos2Ab2a^2=\frac{b^2}{cos^2\angle A}-b^2

a2=b2b2cos2Acos2Aa^2=\frac{b^2-b^2⋅cos^2\angle A}{cos^2\angle A}

a2=b2cos2A(1cos2A)a^2=\frac{b^2}{cos^2\angle A}⋅(1-cos^2\angle A)

a=bcosA1cos2Aa=\frac{b}{cos\angle A}⋅\sqrt{\smash[b]{1-cos^2\angle A}}

Find B\angle B:

B=180°AC=180A90°=\angle B=180\degree-\angle A-\angle C=180\angle-\angle A- 90\degree=

=90°A=90\degree-\angle A

3.Given A,B\angle A, \angle B

Find: a?a-? b?b-? c?c-?

Solution:

Let side c=xc=x, then find the side bb :

cosA=bccos \angle A=\frac{b}{c}

b=ccosAb=c⋅cos\angle A

b=xcosAb=x⋅cos\angle A

Find the side aa :

a2+b2=c2a^2+b^2=c^2

a2+x2cos2A=x2a^2+x^2⋅cos^2\angle A=x^2

a2=x2x2cos2Aa^2=x^2-x^2⋅cos^2\angle A

a2=x2(1cos2A)a^2=x^2(1-cos^2\angle A)

a=x1cos2Aa=x⋅\sqrt{\smash[b]{1-cos^2\angle A}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS